Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wastewater surveillance has been widely implemented for monitoring of SARS-CoV-2 during the global COVID-19 pandemic, and near-to-source monitoring is of particular interest for outbreak management in discrete populations. However, variation in population size poses a challenge to the triggering of public health interventions using wastewater SARS-CoV-2 concentrations. This is especially important for near-to-source sites that are subject to significant daily variability in upstream populations. Focusing on a university campus in England, this study investigates methods to account for variation in upstream populations at a site with highly transient footfall and provides a better understanding of the impact of variable populations on the SARS-CoV-2 trends provided by wastewater-based epidemiology. The potential for complementary data to help direct response activities within the near-to-source population is also explored, and potential concerns arising due to the presence of heavily diluted samples during wet weather are addressed. Using wastewater biomarkers, it is demonstrated that population normalisation can reveal significant differences between days where SARS-CoV-2 concentrations are very similar. Confidence in the trends identified is strongest when samples are collected during dry weather periods; however, wet weather samples can still provide valuable information. It is also shown that building-level occupancy estimates based on complementary data aid identification of potential sources of SARS-CoV-2 and can enable targeted actions to be taken to identify and manage potential sources of pathogen transmission in localised communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450208 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2021.150406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!