Biochar has been of considerable importance for various environmental applications in recent years. It has exhibited substantial advantages like favourable structural and surface properties, easy process of preparation and widely available feedstocks. These set of exceptional properties make it an efficient, cost-effective and environment friendly source for diversified elimination of pollutants. The heterogeneity of physico-chemical properties offers a possibility for biochar to optimize its efficacy for targeted applications. This review aims to highlight the critical role that biochar plays in various environmental applications, be it in soil, water or air. In particular the article offers a comprehensive review of the recent research findings and updates related to the diversified role of biochar. Also, the interaction of pollutants with biochar functional groups and the impact of variation of parameters on biochar attribute relevant to specific pollutant removal, modifications, mechanisms involved and competence for such removal has been discussed. Different technologies for production of biochar have also been summarized with an emphasis on post treatment of biochar, such as modification and doping. In addition to this, the underlying gaps in the studies carried out so far and recommendations for future research areas in biochar have also been deliberated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150444 | DOI Listing |
Environ Res
January 2025
Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:
Microplastics (MPs) pose significant risks to aquatic life and human health. Conventional water treatment is ineffective in removing MPs, demanding alternative technologies. Biochar exhibits a potential for removing MPs through adsorption and filtration.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Applied Biosciences, Kyungpook National University, 41566, Daegu, Republic of Korea. Electronic address:
Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China.
In this study, the effects of using different scrap ratios in a converter on carbon emissions were analyzed based on life cycle assessment (LCA) theory, and the carbon emissions from the converter were evaluated with the use of coke and biochar as heating agents at high scrap ratios. In this industrial experiment, the CO emissions during the converter smelting process decreased with the increase in the scrap steel ratio. For every 1% increase in the scrap steel ratio, the carbon emissions during the steelmaking process decreased by 14.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.
The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!