Breast cancer cells evade cell death by overexpressing SLC7A11, which functions by transporting cystine into cells in exchange for intracellular glutamate facilitating glutathione synthesis and reducing reactive oxygen species (ROS)-mediated stress. Using an in silico approach, we predicted an miRNA (miR-5096) that can target and downregulate SLC7A11. We demonstrated SLC7A11 as a target of miR-5096 by 3'UTR luciferase assay and further validated it by identifying reduced mRNA and protein levels of SLC7A11 upon miR-5096 overexpression. miR-5096-induced ferroptotic cell death in human breast cancer cells was confirmed by concurrently increased ROS, OH, lipid ROS, and iron accumulation levels and decreased GSH and mitochondrial membrane potential (MitoTracker™ Orange) with mitochondrial shrinkage and partial cristae loss (observed by TEM). miR-5096 inhibited colony formation, transwell migration, and breast cancer cell invasion, whereas antimiR-5096 promoted these tumorigenic properties. Ectopic expression of SLC7A11 partly reversed miR-5096-mediated effects on cell survival, ROS, lipid peroxides, iron accumulation, GSH, hydroxyl radicals, mitochondrial membrane potential, and colony formation. miR-5096 modulated the expression of epithelial-mesenchymal transition markers in vitro and inhibited the metastatic potential of MDA-MB-231 cells in a tumor xenograft model of zebrafish larvae. Our results demonstrate that miR-5096 is a tumor-suppressive miRNA in breast cancer cells, and this paper discusses its therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2021.09.033DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer cells
16
target mir-5096
8
human breast
8
cell death
8
ros lipid
8
iron accumulation
8
mitochondrial membrane
8
membrane potential
8
colony formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!