RNA splicing is a key process in eukaryotic gene expression, in which an intron is spliced out of a pre-mRNA molecule to eventually produce a mature mRNA. Most intron-containing genes are constitutively spliced, hence efficient splicing of an intron is crucial for efficient regulation of gene expression. Here we use a large synthetic oligo library of ~20,000 variants to explore how different intronic sequence features affect splicing efficiency and mRNA expression levels in S. cerevisiae. Introns are defined by three functional sites, the 5' donor site, the branch site, and the 3' acceptor site. Using a combinatorial design of synthetic introns, we demonstrate how non-consensus splice site sequences in each of these sites affect splicing efficiency. We then show that S. cerevisiae splicing machinery tends to select alternative 3' splice sites downstream of the original site, and we suggest that this tendency created a selective pressure, leading to the avoidance of cryptic splice site motifs near introns' 3' ends. We further use natural intronic sequences from other yeast species, whose splicing machineries have diverged to various extents, to show how intron architectures in the various species have been adapted to the organism's splicing machinery. We suggest that the observed tendency for cryptic splicing is a result of a loss of a specific splicing factor, U2AF1. Lastly, we show that synthetic sequences containing two introns give rise to alternative RNA isoforms in S. cerevisiae, demonstrating that merely a synthetic fusion of two introns might be suffice to facilitate alternative splicing in yeast. Our study reveals novel mechanisms by which introns are shaped in evolution to allow cells to regulate their transcriptome. In addition, it provides a valuable resource to study the regulation of constitutive and alternative splicing in a model organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496845PMC
http://dx.doi.org/10.1371/journal.pgen.1009805DOI Listing

Publication Analysis

Top Keywords

splicing
12
synthetic introns
8
gene expression
8
affect splicing
8
splicing efficiency
8
splice site
8
splicing machinery
8
alternative splicing
8
introns
6
site
6

Similar Publications

Multimodal study of Alzheimer's disease (AD) dorsolateral prefrontal cortex (DLPFC) showed AD-related aberrant intron retention (IR) and proteomic changes not observed at the RNA level. However, the role of sex and how IR may impact the proteome are unclear. Analysis of DLPFC transcriptome showed a clear sex-biased pattern where female AD had 1645 elevated IR events compared to 80 in male AD DLPFC.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the epidemiological, clinical, and molecular data of mucopolysaccharidosis type II (MPS II) patients and their outcomes using the national registry of patients in the Russian Federation (RF). Materials and Methods: In the retrospective cohort study, the authors included data from the Russian national registry of MPS II. Results: The prevalence of MPS II in RF is 0.

View Article and Find Full Text PDF

has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking.

View Article and Find Full Text PDF

Temporal regulation of gene expression is required for developmental transitions, including differentiation, proliferation, and morphogenesis. In the nematode , heterochronic microRNAs (miRNAs) regulate the temporal expression of genes that promote animal development. The heterochronic miRNAs lin-4 and let-7 are required during different stages of larval development and are associated with the miRNA-specific Argonaute ALG-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!