Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photothermal bimorph actuators have attracted considerable attention in intelligent devices because of their cordless control and lightweight and easy preparation. However, current photothermal bimorph actuators are mostly based on films or papers driven by near-infrared sources, which are deficient in flexibility and adaptability, restricting their potential in wearable applications. Herein, a bimorph textile actuator that can be scalably fabricated with a traditional textile route and autonomously triggered by sunlight is reported. The active layer and passive layer of the bimorph are constructed by polypropylene tape and a MXene-modified polyamide filament. Because of the opposite thermal expansion and MXene-enhanced photothermal efficiency (>260%) of the bimorph, the textile actuator presents effective deformation (1.38 cm) under low sunlight power (100 mW/cm). This work provides a new pathway for wearable sunlight-triggered actuators and finds attractive applications for smart textiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c02578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!