A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wearable Sunlight-Triggered Bimorph Textile Actuators. | LitMetric

Wearable Sunlight-Triggered Bimorph Textile Actuators.

Nano Lett

Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, P.R. China.

Published: October 2021

Photothermal bimorph actuators have attracted considerable attention in intelligent devices because of their cordless control and lightweight and easy preparation. However, current photothermal bimorph actuators are mostly based on films or papers driven by near-infrared sources, which are deficient in flexibility and adaptability, restricting their potential in wearable applications. Herein, a bimorph textile actuator that can be scalably fabricated with a traditional textile route and autonomously triggered by sunlight is reported. The active layer and passive layer of the bimorph are constructed by polypropylene tape and a MXene-modified polyamide filament. Because of the opposite thermal expansion and MXene-enhanced photothermal efficiency (>260%) of the bimorph, the textile actuator presents effective deformation (1.38 cm) under low sunlight power (100 mW/cm). This work provides a new pathway for wearable sunlight-triggered actuators and finds attractive applications for smart textiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02578DOI Listing

Publication Analysis

Top Keywords

bimorph textile
12
wearable sunlight-triggered
8
photothermal bimorph
8
bimorph actuators
8
textile actuator
8
bimorph
6
sunlight-triggered bimorph
4
textile
4
actuators
4
textile actuators
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!