The reactions of the concerted HO elimination from alkyl peroxy radicals and the βscission of the C-OOH bond from hydroperoxy alkyl radicals, which lead to the formation of olefins and HO radicals, are two important reaction classes that compete with the second O addition step of hydroperoxy alkyl radicals, which are responsible for the chain branching in the low-temperature oxidation of normal alkyl cycloalkanes. These two reaction classes are also believed to be responsible for the negative temperature coefficient behavior due to the formation of the relatively unreactive HO radical, which has the potential to inhibit ignition of normal alkyl cycloalkanes. In this work, the kinetics of the above two reaction classes in normal alkyl cycloalkanes are studied, where reactions in the concerted elimination class are divided into subclasses depending upon the types of carbons from which the H atom is eliminated and the positions of the reaction center (on the alkyl side chain or on the cycle), and the reactions in the βscission reaction class are divided into subclasses depending upon the types of the carbons on which the radical is located and the positions of the reaction center. Energy barriers by using quantum chemical methods at the CBS-QB3 level, high-pressure-limit rate constants by using canonical transition state theory, and pressure-dependent rate constants at pressures from 0.01 to 100 atm by using Rice-Ramsberger-Kassel-Marcus/Master Equation theory are calculated for a representative set of reactions from methyl cyclohexane to -butyl cyclohexane in each subclass, from which high-pressure-limit rate rules and pressure-dependent rate rules for each subclass are derived from the average rate constants of reactions within each subclass. A comparison of the rate constants for the reactions in the two reaction classes calculated in this work is made with the rate constants of the same reactions from available mechanisms published in the literature, where most of the rate constants are approximately estimated from analogous reactions in alkanes or small alkyl cyclohexanes, and it is found that a large difference may exist between them, indicating that the present work, which provides more accurate kinetic parameters and reasonable rate rules for these reaction classes, can be helpful to construct higher-accuracy mechanism models for normal alkyl cyclohexane combustion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c01122 | DOI Listing |
Biomed Phys Eng Express
January 2025
Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.
Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFStat Med
February 2025
Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore.
The additive hazard model, which focuses on risk differences rather than risk ratios, has been widely applied in practice. In this paper, we consider an additive hazard model with varying coefficients to analyze recurrent events data. The model allows for both varying and constant coefficients.
View Article and Find Full Text PDFBiol Cybern
January 2025
Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which generally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral equation and usually is rather slow in numerical implementation.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Chair of Modelling in Engineering Sciences and Medicine, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva c. 6, 1000 Ljubljana, Slovenia.
The Lateral Collateral Ligament (LCL), one of the four major ligaments in the knee joint, resides on the outer aspect of the knee. It forms a vital connection between the femur and the fibula. The LCL's primary role is to provide stability against Varus forces, safeguarding the knee from undue rotation and tibial displacement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!