Identifying peripheral arterial disease in the elderly patients using machine-learning algorithms.

Aging Clin Exp Res

Department of Geriatrics, The Tenth People's Hospital of Shanghai, Tongji University, No. 301, Yanchang Middle Road, Shanghai, 200072, People's Republic of China.

Published: March 2022

Background: Peripheral artery disease (PAD) is a common syndrome in elderly people. Recently, artificial intelligence (AI) algorithms, in particular machine-learning algorithms, have been increasingly used in disease diagnosis.

Aim: In this study, we designed an effective diagnostic model of PAD in the elderly patients using artificial intelligence.

Methods: The study was performed with 539 participants, all over 80 years in age, who underwent the measurements of Doppler ultrasonography and ankle-brachial pressure index (ABI). Blood samples were collected. ABI and two machine-learning algorithms (MLAs)-logistic regression and a random forest (RF) model-were established to diagnose PAD. The sensitivity and specificity of the models were analyzed. An additional RF model was designed based on the most significant features of the original RF model and a prospective study was conducted to demonstrate its external validity.

Results: Thirteen of the 28 features introduced to the MLAs differed significantly between PAD and non-PAD participants. The respective sensitivities and specificities of logistic regression, RF, and ABI were as follows: logistic regression (81.5%, 83.8%), RF (89.3%, 91.6%) and ABI (85.1%, 84.5%). In the prospective study, the newly designed RF model based on the most significant seven features exhibited an acceptable performance rate for the diagnosis of PAD with 100.0% sensitivity and 90.3% specificity.

Conclusions: An RF model was a more effective method than the logistic regression and ABI for the diagnosis of PAD in an elderly cohort.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40520-021-01985-xDOI Listing

Publication Analysis

Top Keywords

machine-learning algorithms
12
logistic regression
12
based features
8
prospective study
8
regression abi
8
diagnosis pad
8
pad
6
model
5
abi
5
identifying peripheral
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!