Background: Intragastric balloon (IGB) is a medical device used in the endoscopic treatment of pre-obesity and obesity. The involvement of IGB with biofilms has been previously reported; however, little is still known. We determine the frequency of biofilms naturally formed on the external surface of IGB, as well as some variables related to IGB types and patients features, species of fungi involved, and biofilm evidence.

Methods: A retrospective study was conducted based on endoscopies and medical records of patients with explanted IGB between 2015 and 2018, which had masses strongly adhered to the surface of the balloon, suspecting the presence of a biofilm. From 2018, the samples of those masses were investigated seeking biofilm characterization based on mycological and structural aspects.

Results: A total of 149 endoscopies were surveyed; 27 IGBs (18.12%) showed signs suggesting biofilm formation. There was no significant difference between biofilm involvement in IGB and the anthropometric and demographic profile of the patients. On the other hand, there was a significant difference regarding the IGB type, 24.05% of the adjustable IGB were compromised by biofilm, while in non-adjustable IGB, it was 11.43% (p = 0.04; OR 2.45; 95% CI, 0.98-6.12). Candida glabrata was the most isolated fungal species from the well-organized fungal biofilm.

Conclusions: The frequency of fungal biofilm naturally formed on the external surface of IGB was elevated. The risk of biofilm formation was increased for the adjustable IGB, but it did not relate to the demographic data and anthropometric patient profile.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11695-021-05730-1DOI Listing

Publication Analysis

Top Keywords

naturally formed
12
igb
11
involvement igb
8
formed external
8
external surface
8
surface igb
8
biofilm
8
biofilm formation
8
adjustable igb
8
study naturally
4

Similar Publications

Downscaling of Non-Van der Waals Semimetallic WN with Resistivity Preservation.

ACS Nano

January 2025

Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.

The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.

View Article and Find Full Text PDF

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites.

Front Parasitol

February 2024

Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.

An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.

View Article and Find Full Text PDF

FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated design.

View Article and Find Full Text PDF

Introduction: Intraprofessional collaboration between family physicians (FPs) and specialist physicians (SPs) is posited to improve patient outcomes but is hindered by power dynamics. Research informing intraprofessional training on hospital wards often conceptualizes power at an interactional level. However, less is known about how social structures make these power dynamics possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!