Drought stress response studies and overexpression of vun-miR408 proved it to be essential for abiotic stress tolerance in cowpea. Small RNA and transcriptome sequencing of an elite high-yielding drought-tolerant Indian cowpea cultivar, Pusa Komal revealed a differential expression of 198 highly conserved, 21 legume-specific, 14 less-conserved, and 10 novel drought-responsive microRNAs (miRNAs) along with 3391 (up-regulated) and 3799 (down-regulated) genes, respectively, in the leaf and root libraries. Among the differentially expressed miRNAs, vun-miR408-3p, showed an up-regulation of 3.53-log-fold change under drought stress. Furthermore, laccase 12 (LAC 12) was identified as the potential target of vun-miR408-3p using 5' RNA ligase-mediated rapid amplification of cDNA ends. The stable transgenic cowpea lines overexpressing artificial vun-miR408-3p (OX-amiR408) displayed enhanced drought and salinity tolerance as compared to the wild-type plants. An average increase of 30.17% in chlorophyll, 26.57% in proline, and 27.62% in relative water content along with lesser cellular HO level was observed in the transgenic lines in comparison with the wild-type plants under drought stress. Additionally, the scanning electron microscopic study revealed a decrease in the stomatal aperture and an increase in the trichome density in the transgenic lines. The expression levels of laccase 3 and laccase 12, the potential targets of miR408, related to lipid catabolic processes showed a significant reduction in the wild-type plants under drought stress and the transgenic lines, indicating the regulation of lignin content as a plausibly essential trait related to the drought tolerance in cowpea. Taken together, this study primarily focused on identification of drought-responsive miRNAs and genes in cowpea, and functional validation of role of miR408 towards drought stress response in cowpea.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-021-02783-5DOI Listing

Publication Analysis

Top Keywords

drought stress
20
wild-type plants
12
transgenic lines
12
small rna
8
rna transcriptome
8
role mir408
8
drought
8
mir408 drought
8
drought tolerance
8
response cowpea
8

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.

Plants (Basel)

January 2025

Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.

Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!