A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electronic structures and spectroscopic signatures of diiron intermediates generated by O activation of nonheme iron(II)-thiolate complexes. | LitMetric

The activation of O at thiolate-ligated iron(II) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron-thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O to catalyze tandem S-C bond formation and -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron-thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( 2020, , 17745-17757). These models feature monodentate thiolate ligands and tripodal N ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron(III) dimers with a bridging oxo ligand derived from the four-electron reduction of O. Structural models of 3 and 4 consistent with the experimental data were generated density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron(III)-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron(III)-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O reaction landscapes of iron-thiolate species in both biological and synthetic environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721859PMC
http://dx.doi.org/10.1039/d1dt02286eDOI Listing

Publication Analysis

Top Keywords

spectroscopic signatures
8
egtb ovoa
8
thiolate ligands
8
electronic structures
4
structures spectroscopic
4
signatures diiron
4
intermediates
4
diiron intermediates
4
intermediates generated
4
generated activation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!