The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a crucial role in mediating cellular responses to cytokines and growth factors. STAT proteins are activated by tyrosine phosphorylation mediated mainly by JAKs. The abnormal activation of STAT signaling pathways is implicated in many human diseases, especially cancer and immune-related conditions. Therefore, the ability to monitor STAT protein phosphorylation within the native cell signaling environment is important for both academic and drug discovery research. The traditional assay formats available to quantify phosphorylated STAT proteins include western blotting and the enzyme-linked immunosorbent assay (ELISA). These heterogeneous methods are labor-intensive, low-throughput, and often not reliable (specific) in the case of western blotting. Homogeneous (no-wash) methods are available but remain expensive. Here, detailed protocols are provided for the sensitive, robust, and cost-effective measurement in a 384-well format of endogenous levels of phosphorylated STAT1 (Y701), STAT3 (Y705), STAT4 (Y693), STAT5 (Y694/Y699), and STAT6 (Y641) in cell lysates from adherent or suspension cells using the novel THUNDER time-resolved Förster resonance energy transfer (TR-FRET) platform. The workflow for the cellular assay is simple, fast, and designed for high-throughput screening (HTS). The assay protocol is flexible, uses a low-volume sample (15 µL), requires only one reagent addition step, and can be adapted to low-throughput and high-throughput applications. Each phospho-STAT sandwich immunoassay is validated under optimized conditions with known agonists and inhibitors and generates the expected pharmacology and Z'-factor values. As TR-FRET assays are ratiometric and require no washing steps, they provide much better reproducibility than traditional approaches. Together, this suite of assays provides new cost-effective tools for a more comprehensive analysis of specific phosphorylated STAT proteins following cell treatment and the screening and characterization of specific and selective modulators of the JAK/STAT signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!