A Decade Later-Progress and Next Steps for Pediatric Simulation Research.

Simul Healthc

From the Tufts University School of Medicine (L.A.M.), Boston, MA; Department of Medical Education (L.A.M.), The Hannaford Center for Simulation, Innovation and Education; Section of Hospital Medicine (L.A.M.), Department of Pediatrics, The Barbara Bush Children's Hospital at Maine Medical Center, Portland, ME; Section of Emergency Medicine (C.B.D.), Department of Pediatrics, Baylor College of Medicine; Simulation Center (C.B.D.), Texas Children's Hospital, Pediatric Emergency Medicine, Baylor College of Medicine; Section of Critical Care Medicine (K.I.D.), Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX; Departments of Pediatrics and Emergency Medicine (A.C.), University of Calgary, Calgary, Canada; Division of Pediatric Critical Care (A.W.C.), University of Louisville School of Medicine and Norton Children's Hospital, Louisville, KY; Section of Emergency Medicine (M.A.A.), Yale University School of Medicine, New Haven, CT; Division of Critical Care (J.P.D.), University of Alberta, Alberta, Canada; and Columbia University Vagelos College of Physicians and Surgeons (D.O.K.), New York, NY.

Published: December 2022

AI Article Synopsis

Article Abstract

A decade ago, at the time of formation of the International Network for Pediatric Simulation-based Innovation, Research, and Education, the group embarked on a consensus building exercise. The goal was to forecast the facilitators and barriers to growth and maturity of science in the field of pediatric simulation-based research. This exercise produced 6 domains critical to progress in the field: (1) prioritization, (2) research methodology and outcomes, (3) academic collaboration, (4) integration/implementation/sustainability, (5) technology, and (6) resources/support/advocacy. This article reflects on and summarizes a decade of progress in the field of pediatric simulation research and suggests next steps in each domain as we look forward, including lessons learned by our collaborative grass roots network that can be used to accelerate research efforts in other domains within healthcare simulation science.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SIH.0000000000000611DOI Listing

Publication Analysis

Top Keywords

pediatric simulation
8
pediatric simulation-based
8
field pediatric
8
progress field
8
decade later-progress
4
later-progress steps
4
pediatric
4
steps pediatric
4
simulation decade
4
decade ago
4

Similar Publications

Estimation of the effects of hand growth on muscle activation patterns: A musculoskeletal modeling study.

J Biomech

January 2025

The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; North Carolina State University, Raleigh, NC, United States.

Throughout childhood growth and development, both the nervous and the musculoskeletal systems undergo rapid change. The goal of this study was to examine the impact of growth-related changes in skeletal size and muscle strength on the neural control of finger force generation. By modifying an existing OpenSim hand model in accordance with pediatric anthropometric data, we created 10 distinct models representing males and females at each year of development from 6 to 10 years old.

View Article and Find Full Text PDF

Reaching competency in congenital heart surgery (CHS) requires lengthy and rigorous training. Due to patient safety, time limitations, and procedural complexity, the intraoperative setting is not ideal for technical practice. Surgical simulation using synthetic, biological, or virtual models is an increasingly valuable educational tool for technical training and assessment.

View Article and Find Full Text PDF

Introduction: The Society for Pediatric Anesthesia Quality and Safety Committee developed the Pediatric Regional Anesthesia Time-Out Checklist, consisting of 14 safety items intended to be reviewed by an anesthesia team prior to a regional anesthetic. Primarily, we hypothesized that use of this Checklist would increase the number of safety items performed compared with no checklist, evaluating the usefulness of this tool. Secondarily, we hypothesized that, after checklist training, subjects would show better clinical judgment by electing to perform a regional anesthetic in scenarios in which no programmed error existed and electing to not perform a regional anesthetic in scenarios in which a programmed error did exist.

View Article and Find Full Text PDF

The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!