AI Article Synopsis

  • WMHs are linked to cognitive deficits and involve the parietal lobe's various subregions, which play a key role in neurocognition.
  • A study analyzed resting-state functional connectivity (rs-FC) in 104 patients with varying severity of WMHs compared to 36 healthy controls, focusing on specific parietal subregions.
  • Results indicated significant connectivity differences in certain parietal areas that correlated with cognitive performance, suggesting altered connectivity may contribute to cognitive impairments in patients with WMHs.

Article Abstract

Background: The white matter hyperintensities (WMHs) are considered as one of the core neuroimaging findings of cerebral small vessel disease and independently associated with cognitive deficit. The parietal lobe is a heterogeneous area containing many subregions and play an important role in the processes of neurocognition.

Objective: To explore the relationship between parietal subregions alterations and cognitive impairments in WHMs.

Methods: Resting-state functional connectivity (rs-FC) analyses of parietal subregions were performed in 104 right-handed WMHs patients divided into mild (n = 39), moderate (n = 37), and severe WMHs (n = 28) groups according to the Fazekas scale and 36 healthy controls. Parietal subregions were defined using tractographic Human Brainnetome Atlas and included five subregions for superior parietal lobe, six subregions for inferior parietal lobe (IPL), and three subregions for precuneus. All participants underwent a neuropsychological test battery to evaluate emotional and general cognitive functions.

Results: Differences existed between the rs-FC strength of IPL_R_6_2 with the left anterior cingulate gyrus, IPL_R_6_3 with the right dorsolateral superior frontal gyrus, and the IPL_R_6_5 with the left anterior cingulate gyrus. The connectivity strength between IPL_R_6_3 and the left anterior cingulate gyrus were correlated with AVLT-immediate and AVLT-recognition test in WMHs.

Conclusion: We explored the roles of parietal subregions in WMHs using rs-FC. The functional connectivity of parietal subregions with the cortex regions showed significant differences between the patients with WMHs and healthy controls which may be associated with cognitive deficits in WMHs.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-210315DOI Listing

Publication Analysis

Top Keywords

parietal subregions
24
functional connectivity
12
parietal lobe
12
left anterior
12
anterior cingulate
12
cingulate gyrus
12
subregions
10
parietal
9
white matter
8
matter hyperintensities
8

Similar Publications

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

Background: It is well known that dysfunction of thalamocortical circuity generates the motor signs that lead to distinct disease processes and prognoses in Parkinson's disease (PD). This study aimed to leverage ultrahigh-field magnetic resonance imaging (MRI) to identify the connectivity alterations of thalamocortical circuity and clarify their relation to motor signs in early PD.

Methods: Patients with early-stage PD (n=55) and healthy controls (HCs, n=56) were recruited from March 2022 to July 2023.

View Article and Find Full Text PDF

Objective: Anorexia nervosa (AN) is associated with disturbances in reward processing, cognitive control, and body image perception, implicating striatal dysfunction. Evidence suggests that underweight may modulate brain function in AN. We aimed to investigate whole-brain resting-state functional connectivity (rsFC) of the striatum in patients with AN while controlling for the acute effects of underweight.

View Article and Find Full Text PDF

The human cerebral cortex is known for its hemispheric specialization, which underpins a variety of functions and activities. However, it is not well understood if similar lateralization exists within the deep gray matter nuclei, such as the basal ganglia (BG) and thalamus, and their associated arteries, including the lenticulostriate arteries (LSAs). To explore this, we analyzed images from 7T MRI scans of 40 healthy young individuals.

View Article and Find Full Text PDF

Uremic pruritus (UP) significantly compromises the quality of life in patients with end-stage renal disease undergoing peritoneal dialysis. Although the precise pathophysiological mechanisms of UP remain elusive, the thalamus, which is integral to processing sensory information, is potentially implicated in its development. This study aimed to investigate alterations in the structure and resting-state functional connectivity (rsFC) of thalamic subregions in patients with UP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!