Dual-function antibacterial surfaces have exhibited promising potential in addressing implant-associated infections. However, both bactericidal and antifouling properties need to be further improved prior to practical uses. Herein, we report the preparation and properties of a linear block copolymer coating (LP-KF) and a single-chain nanoparticle coating (NP-KF) with poly(ethylene glycol) (PEG) and cationic polypeptide segments. NP-KF with cyclic PEG segments and densely charged polypeptide segments was expected to display improved bactericidal and antifouling properties. LP-KF was prepared by the combination of ring-opening polymerization of -carboxyanhydride (NCA) monomers and subsequent deprotection. NP-KF was prepared by intramolecular cross-linking of LP-KF in diluted solutions. Both LP-KF- and NP-KF-coated PDMS surfaces were prepared by dipping with polydopamine-coated surfaces. They showed superior bactericidal activity against both and with >99.9% killing efficacy, excellent protein adsorption resistance, antibacterial adhesion, and low cytotoxicity. The NP-KF coating showed higher bactericidal activity and antifouling properties than its linear counterpart. It also showed significant anti-infective property and histocompatibility , which makes it a good candidate for implants and biomedical device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c00865 | DOI Listing |
Membranes (Basel)
December 2024
Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Associate Professor of Mechanical Engineering, College of Engineering, University of Georgia (UGA), 302 E. Campus Rd., Athens 30602, United States.
This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Shandong Ocean Pipe Technology Co., Ltd, Dezhou 253300, China.
Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!