Drugs are designed and validated based on physicochemical data on their interactions with target proteins. For low water-solubility drugs, however, quantitative analysis is practically impossible without accurate estimation of precipitation. Here we combined quantitative NMR with NMR titration experiments to rigorously quantify the interaction of the low water-solubility drug pimecrolimus with its target protein FKBP12. Notably, the dissociation constants estimated with and without consideration of precipitation differed by more than tenfold. Moreover, the method enabled us to quantitate the FKBP12-pimecrolimus interaction even under a crowded condition established using the protein crowder BSA. Notably, the FKBP12-pimecrolimus interaction was slightly hampered under the crowded environment, which is explained by transient association of BSA with the drug molecules. Collectively, the described method will contribute to both quantifying the binding properties of low water-solubility drugs and to elucidating the drug behavior in complex crowded solutions including living cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp03175a | DOI Listing |
Molecules
December 2024
Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China.
The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al fluorescent probe (Probe A).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China.
Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:
There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China. Electronic address:
Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!