Introduction: Immunotherapy through the blockade of PD1-PDL1 axis has shown to improve outcomes in advanced and early triple negative breast cancer (TNBC). To further enhance immune-stimulation, and ultimately improve patient outcomes, a wide variety of next-generation immunotherapies (NGIO) is being developed for this disease.

Areas Covered: In the present article, we discuss the immune landscape of TNBC and recapitulate the rationale and available clinical evidence of NGIO under early phase development for TNBC, highlighting challenges and opportunities in this emerging field of research.

Expert Opinion: Multiple immunotherapeutic strategies beyond PD-(L)1 blockade have been tested for TNBC, including the targeting of further inhibitory checkpoints, the agonism of costimulatory molecules, the intratumoral administration of immunotherapies and cancer vaccines. Most of these strategies have demonstrated to be safe in early clinical trials, with some exhibiting early signs of antitumor activity. To optimally harness the potential of NGIO, a refined patient selection based on emerging immune biomarkers will be required, through an adaptation of immunotherapeutic strategies based on patient and tumor characteristics. More mature data from ongoing clinical trials, added to the progressively increasing knowledge on breast cancer immune landscape, will hopefully clarify the role of NGIO for the treatment of TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543784.2021.1972968DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
triple negative
8
negative breast
8
cancer tnbc
8
early phase
8
phase development
8
immune landscape
8
immunotherapeutic strategies
8
clinical trials
8
tnbc
6

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!