Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices.

Drug Deliv

Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.

Published: December 2021

Lung cancer is the second most common and lethal cancer in the world. Chemotherapy is the preferred treatment modality for lung cancer and prolongs patient survival by effective controlling of tumor growth. However, owing to the nonspecific delivery of anticancer drugs, systemic chemotherapy has limited clinical efficacy and significant systemic adverse effects. Inhalation routes, on the other hand, allow for direct delivery of drugs to the lungs in high local concentrations, enhancing their anti-tumor activity with minimum side effects. Preliminary research studies have shown that inhaled chemotherapy may be tolerated with manageable adverse effects such as bronchospasm and cough. Enhancing the anticancer drugs deposition in tumor cells and limiting their distribution to other healthy cells will therefore increase their clinical efficacy and decrease their local and systemic toxicities. Because of the controlled release and localization of tumors, nanoparticle formulations are a viable option for the delivery of chemotherapeutics to lung cancers via inhalation. The respiratory tract physiology and lung clearance mechanisms are the key barriers to the effective deposition and preservation of inhaled nanoparticle formulations in the lungs. Designing and creating smart nanoformulations to optimize lung deposition, minimize pulmonary clearance, and improve cancerous tissue targeting have been the subject of recent research studies. This review focuses on recent examples of work in this area, along with the opportunities and challenges for the pulmonary delivery of smart nanoformulations to treat lung cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477964PMC
http://dx.doi.org/10.1080/10717544.2021.1981492DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
cancer chemotherapy
8
anticancer drugs
8
clinical efficacy
8
adverse effects
8
nanoparticle formulations
8
lung cancers
8
smart nanoformulations
8
lung
7
surface-engineered smart
4

Similar Publications

Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis.

View Article and Find Full Text PDF

Importance: Radiotherapy (RT) plan quality is an established predictive factor associated with cancer recurrence and survival outcomes. The addition of radiologists to the peer review (PR) process may increase RT plan quality.

Objective: To determine the rate of changes to the RT plan with and without radiology involvement in PR of radiation targets.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) represent a novel class of targeted anti-tumor medications that utilize the covalent linkage between monoclonal antibodies and cytotoxic agents. This unique mechanism combines the cytotoxic potency of drugs with the targeting specificity conferred by antigen recognition. However, it is essential to recognize that many ADCs still face challenges related to off-target toxicity akin to cytotoxic payloads, as well as targeted toxicity and other potential life-threatening adverse effects, such as treatment-induced interstitial lung injury.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) represents one of the most common subtypes of lung cancer with high rates of incidence and mortality, which contributes to substantial health and economic demand across the globe. Treatment today mainly consists of surgery, radiotherapy, and chemotherapy, but their efficacy in advanced stages is often suboptimal and emphasizes the clear need for new biomarkers and therapeutic targets. Using comprehensive bioinformatics analyses consisting of the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), immune infiltration analysis and functional enrichment analysis, and single-cell analysis, we examined the potential of keratin 18 (KRT18) as a candidate biomarker in advanced LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!