Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly tumor-tissue-selective drugs are a prerequisite for accurate diagnosis and efficient photodynamic therapy (PDT) of tumors, but the currently used fluorescent dyes and photosensitizers generally lack the ability for high accumulation and precise localization in tumor tissues. Here we report that monomethoxy polyethylene glycol (MPEG)-modified zinc phthalocyanine (ZnPc) can be selectively accumulated in multiple tumor tissues, and that the selectivity is controlled by the chain length of MPEG. MPEG-monosubstituted ZnPcs with different chain lengths were synthesized, among which the shorter chain (mw < 2k)-modified ZnPc did not show tumor tissue selectivity, while MPEG2k-5k-substituted ZnPc could be rapidly and selectively accumulated in H22 tumor tissues in mice after intravenous injection. Especially, MPEG4k-Pc showed the best tumor tissue selectivity with a tumor/liver (T/L) ratio of 1.7-2.2 in HepG2, MDA-MB231, AGS, and HT-29 tumor-bearing mice. It also exhibited potent photodynamic therapy effects after one PDT treatment, and tumor growth was significantly inhibited in H22-bearing mice with an inhibition rate over 98% and no obvious toxicity. Consequently, MPEG-modified ZnPc could serve as a potential platform for selective fluorescence imaging and photodynamic therapy of multiple tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c00855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!