With the advantage of reversible shape-morphing between two different permanent shapes under external stimuli, the two-way shape-memory aerogel is expected to become a preferred aerogel for developing practical applications in actuators, sensors, robotics, and more. Herein, the first two-way shape-memory liquid crystal elastomer (LCE)-based aerogel is prepared by an orthogonal heat and light curing strategy coupled with an intermediate mechanical stretching step. The differential scanning calorimetry, temperature-varied wide-angle X-ray scattering, and polarizing optical microscope results indicate that the aerogel possesses a liquid crystal phase and the insider mesogens are well-oriented along the stretching direction. In addition to having superior compressibility and excellent shape stability, this LCE-based aerogel can perform a reversible shape deformation during the heating/cooling cycles with a shrinkage ratio of 37%. The work, that is disclosed here, realizes a truly two-way shape-memory behavior rather than the one-way shape deformation of traditional polymer aerogel materials, and may promote potential applications of this novel LCE-based aerogel material in control devices, soft actuators, and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596101 | PMC |
http://dx.doi.org/10.1002/advs.202102674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!