AI Article Synopsis

  • Recent resequencing efforts have focused on cataloging genetic variations in key crops like soybean, but most rely on existing reference genomes; de novo assemblies offer a new perspective on genetic diversity.
  • This study presents the de novo assembly and annotation of the Hwangkeum soybean cultivar using advanced sequencing technologies, resulting in a genome of 933.12 Mb with nearly 80,000 transcripts.
  • Comparisons with the established Williams 82 reference genome identified significant genetic variations, while also revealing that Hwangkeum could serve as an important new reference for soybean trait improvement.

Article Abstract

Massive resequencing efforts have been undertaken to catalog allelic variants in major crop species including soybean, but the scope of the information for genetic variation often depends on short sequence reads mapped to the extant reference genome. Additional de novo assembled genome sequences provide a unique opportunity to explore a dispensable genome fraction in the pan-genome of a species. Here, we report the de novo assembly and annotation of Hwangkeum, a popular soybean cultivar in Korea. The assembly was constructed using PromethION nanopore sequencing data and two genetic maps and was then error-corrected using Illumina short-reads and PacBio SMRT reads. The 933.12 Mb assembly was annotated as containing 79,870 transcripts for 58,550 genes using RNA-Seq data and the public soybean annotation set. Comparison of the Hwangkeum assembly with the Williams 82 soybean reference genome sequence (Wm82.a2.v1) revealed 1.8 million single-nucleotide polymorphisms, 0.5 million indels, and 25 thousand putative structural variants. However, there was no natural megabase-scale chromosomal rearrangement. Incidentally, by adding two novel subfamilies, we found that soybean contains four clearly separated subfamilies of centromeric satellite repeats. Analyses of satellite repeats and gene content suggested that the Hwangkeum assembly is a high-quality assembly. This was further supported by comparison of the marker arrangement of anthocyanin biosynthesis genes and of gene arrangement at the Rsv3 locus. Therefore, the results indicate that the de novo assembly of Hwangkeum is a valuable additional reference genome resource for characterizing traits for the improvement of this important crop species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496230PMC
http://dx.doi.org/10.1093/g3journal/jkab272DOI Listing

Publication Analysis

Top Keywords

reference genome
12
soybean cultivar
8
crop species
8
novo assembly
8
hwangkeum assembly
8
satellite repeats
8
assembly
7
genome
6
soybean
6
hwangkeum
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!