Arynes are highly reactive transient intermediates having enormous applications in organic synthesis. In the last three decades aryne chemistry has shown incredible developments in carbon-carbon and carbon-heteroatom bond formation reactions. After the discovery of Kobayashi's protocol for the generation of aryne intermediates in a mild way, this field of chemistry witnessed rapid growth in synthetic organic chemistry. One aspect of development in this field involves C-S bond formation under mild conditions which has a tremendous scope for the synthesis of various important organosulfur building blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1ob01436f | DOI Listing |
Sci Rep
January 2025
College of Architecture and Transportation, Liaoning Technical University, Fuxin, 123000, China.
CO in coal mine underground spaces can easily cause casualties among miners. The humidity in coal mines is relatively high, and traditional Cu-Mn catalysts are prone to deactivation. Compared to traditional Cu-Mn catalysts, doping with Sn enhances the activity and water resistance of Cu-Mn catalysts.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India.
Intermolecular oxidative N-N bond formation reactions are quite challenging and are largely uncharted. N-N linked dimeric indolosesquiterpene alkaloids represent an underexplored class of natural products, and strategies for direct dehydrogenative N-N bond formation are limited. Here, we have reported that a late-stage visible-light photoredox catalysis facilitates N-N bond formation, leading to the total syntheses of atropo-diastereomers dixiamycins A () and B ().
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
We have studied copper-catalyzed cross-coupling of chiral α-CF-substituted allylboronic acids with α-diazoketones. The reaction proceeds with excellent regioselectivity and stereoselectivity via allylic rearrangement. The method is useful for formation a new allylic C(sp)-C(sp) bond with high selectivity.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry and Chemical Engineering, Xian Yang Normal University, Xian Yang, China.
Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!