Introduction And Importance: Several neuro-ophthalmic manifestations have been reported with coronavirus disease 2019 (COVID-19) infection. However, isolated optic neuritis was infrequently reported in humans with COVID-19. If it occurred, optic neuritis was usually a part of a demyelinating syndrome.

Case Presentation: In this paper, we report a case of optic neuritis concomitant with an undiagnosed pituitary macroadenoma discovered during active COVID-19 infection. The case was a 33-year-old woman with infertility who was recently found to have a pituitary macroadenoma secreting prolactin. During active COVID-19 infection, the patient developed optic neuritis that responded well to corticosteroids. Brain imaging and hormonal profile negated the presence of any demyelinating disease or pituitary apoplexy.

Clinical Discussion: A dilemma of whether optic neuritis occurring concomitantly with pituitary macroadenoma is just a coincidence, or there is an association remains unresolved. Whether COVID-19 infection might precipitate optic neuritis in patients with pituitary macroadenoma or not remains an issue to be answered by observing data from future case reports about similar findings.

Conclusion: Optic neuritis in concomitant with pituitary macroadenoma following COVID-19 infection represents a dilemma of whether the visual symptoms are attributed to the tumor or COVID-19 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384762PMC
http://dx.doi.org/10.1016/j.ijso.2021.100390DOI Listing

Publication Analysis

Top Keywords

optic neuritis
32
covid-19 infection
28
pituitary macroadenoma
24
neuritis concomitant
12
active covid-19
12
optic
8
concomitant pituitary
8
covid-19
8
infection case
8
pituitary
7

Similar Publications

Differentiation between multiple sclerosis and neuromyelitis optic spectrum disorders with multilevel fMRI features: A machine learning analysis.

Sci Rep

January 2025

Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.

The conventional statistical approach for analyzing resting state functional MRI (rs-fMRI) data struggles to accurately distinguish between patients with multiple sclerosis (MS) and those with neuromyelitis optic spectrum disorders (NMOSD), highlighting the need for improved diagnostic efficacy. In this study, multilevel functional metrics including resting state functional connectivity, amplitude of low frequency fluctuation (ALFF), and regional homogeneity (ReHo) were calculated and extracted from 116 regions of interest in the anatomical automatic labeling atlas. Subsequently, classifiers were developed using different combinations of these selected features to distinguish between MS and NMOSD.

View Article and Find Full Text PDF

Retinal Changes After Acute and Late Optic Neuritis in Aquaporin-4 Antibody Seropositive NMOSD.

J Neuroophthalmol

December 2024

Experimental and Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology (AJG), University of California San Francisco, San Francisco, California; Neurology (RM, ACC), Multiple Sclerosis, Myelin Disorders and Neuroinflammation Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, France; Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (ACC), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Experimental Neurophysiology Unit (LL, MP, M. Radaelli), Institute of Experimental Neurology (INSPE) Scientific Institute, Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy; Hospital Clinic of Barcelona-Institut d'Investigacions (PV, BS-D, EHM-L), Biomèdiques August Pi Sunyer, (IDIBAPS), Barcelona, Spain; CIEM MS Research Center (MAL-P, MAF), University of Minas Gerais, Medical School, Belo Horizonte, Brazil; Department of Neurology (OA, M. Ringelstein, PA), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology (M. Ringelstein), Centre for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Medicine (MRY), Harbor-University of California at Los Angeles (UCLA) Medical Center, and Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Medicine (MRY), David Geffen School of Medicine at UCLA, Los Angeles, California; Departments of Ophthalmology and Visual Sciences (TJS), Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan; Division of Metabolism, Endocrine and Diabetes (TJS, LC), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Neurology (FP), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; and Department of Neurology (AUB), University of California, Irvine, California.

View Article and Find Full Text PDF

The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs.

J Neuroophthalmol

December 2024

Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.

View Article and Find Full Text PDF

This case series highlights the diverse presentations of seropositive neuromyelitis optica spectrum disorder, including the absence of optic neuritis despite anti-aquaporin 4 antibody positivity. It emphasizes the importance of high index of suspicion, early neurologist referral for improved outcomes, the consequences of delayed referral, and the challenges and treatment potential in low-income countries with limited resources.

View Article and Find Full Text PDF

Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.

Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!