Epigenetic modifications play a crucial role in neurogenesis, learning, and memory, but the study of their role in early neuroectoderm commitment from pluripotent inner cell mass is relatively lacking. Here we utilized the system of directed neuroectoderm differentiation from human embryonic stem cells and identified that KDM6B, an enzyme responsible to erase H3K27me3, was the most upregulated enzyme of histone methylation during neuroectoderm differentiation by transcriptome analysis. We then constructed KDM6B-null embryonic stem cells and found strikingly that the pluripotent stem cells with KDM6B knockout exhibited much higher neuroectoderm induction efficiency. Furthermore, we constructed a series of embryonic stem cell lines knocking out the other H3K27 demethylase KDM6A, and depleting both KDM6A and KDM6B, respectively. These cell lines together confirmed that KDM6 impeded early neuroectoderm commitment. By RNA-seq, we found that the expression levels of a panel of WNT genes were significantly affected upon depletion of KDM6. Importantly, the result that WNT agonist and antagonist could abolish the differential neuroectoderm induction due to manipulating KDM6 further demonstrated that WNT was the major downstream of KDM6 during early neural induction. Moreover, we found that the chemical GSK-J1, an inhibitor of KDM6, could enhance neuroectoderm induction from both embryonic stem cells and induced pluripotent stem cells. Taken together, our findings not only illustrated the important role of the histone methylation modifier KDM6 in early neurogenesis, providing insights into the precise epigenetic regulation in cell fate determination, but also showed that the inhibitor of KDM6 could facilitate neuroectoderm differentiation from human pluripotent stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455897 | PMC |
http://dx.doi.org/10.3389/fcell.2021.702462 | DOI Listing |
Neuro Oncol
January 2025
Department of Medicine, Division of Experimental Medicine, McGill University.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!