Long Non-Coding RNA FGD5-AS1 Induced by Infection Inhibits Apoptosis Wnt/β-Catenin Signaling Pathway.

Front Cell Infect Microbiol

Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.

Published: October 2021

Background: (Ct) is one of the most common bacterial sexually transmitted infection (STI) pathogens in the world, but the exact pathogenic mechanism still needs to be further elucidated. Long non-coding RNAs (lncRNAs) have become vital regulators in many biological processes. Their role in the interaction between Ct and host cells has not been reported.

Methods: Microarrays were used to study the expression profiles of lncRNAs and mRNAs in HeLa cells at 12, 24, and 40 h post-infection (hpi). Differentially expressed lncRNAs and mRNAs were verified by RT-qPCR. Coding-non-coding (CNC) network analysis showed co-expression molecules of selected lncRNA. Western blot, flow cytometry, and indirect immunofluorescence were used to detect the effect of lncRNA FGD5-AS1 on apoptosis during Ct infection.

Results: Compared with the uninfected group, the number of differential lncRNAs were 2,130, 1,081, and 1,101 at 12, 24, and 40 hpi, and the number of differential mRNAs was 1,998, 1,129, and 1,330, respectively. Ct induced differential expression of large amounts of lncRNAs and mRNAs in HeLa cells, indicating that lncRNAs may play roles in the pathogenesis of Ct. RT-qPCR verified six differential lncRNAs and six differential mRNAs, confirming the reliability of the microarray. Among these molecules, lncRNA FGD5-AS1 was found to be upregulated at 12 and 24 hpi. Coding-non-coding (CNC) network analysis showed that co-expressed differential molecules of FGD5-AS1 at 12 and 24 hpi were enriched in the DNA replication and Wnt signaling pathway. The downregulation of FGD5-AS1 decreased the expression of β-catenin and inhibited the translocation of β-catenin and the DNA replication, while it promoted apoptosis of the host cells.

Conclusions: DNA replication and apoptosis of host cells were affected by upregulating FGD5-AS1 Wnt/β-catenin pathway during Ct infection. This study provides evidence that lncRNAs are involved in the coaction between Ct and hosts, and provides new insights into the study of lncRNAs that regulate chlamydial infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460124PMC
http://dx.doi.org/10.3389/fcimb.2021.701352DOI Listing

Publication Analysis

Top Keywords

lncrnas mrnas
12
dna replication
12
lncrnas
9
long non-coding
8
signaling pathway
8
host cells
8
mrnas hela
8
hela cells
8
coding-non-coding cnc
8
cnc network
8

Similar Publications

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves.

BMC Genomics

January 2025

The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.

Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages.

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

Abnormal ac4C modification in metabolic dysfunction associated steatotic liver cells.

Sci Rep

January 2025

Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.

The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!