Children with nonalcoholic fatty liver disease (NAFLD) display an altered gut microbiota compared with healthy children. However, little is known about the fecal bile acid profiles and their association with gut microbiota dysbiosis in pediatric NAFLD. A total of 68 children were enrolled in this study, including 32 NAFLD patients and 36 healthy children. Fecal samples were collected and analyzed by metagenomic sequencing to determine the changes in the gut microbiota of children with NAFLD, and an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system was used to quantify the concentrations of primary and secondary bile acids. The associations between the gut microbiota and concentrations of primary and secondary bile acids in the fecal samples were then analyzed. We found that children with NAFLD exhibited reduced levels of secondary bile acids and alterations in bile acid biotransforming-related bacteria in the feces. Notably, the decrease in Eubacterium and Ruminococcaceae bacteria, which express bile salt hydrolase and 7α-dehydroxylase, was significantly positively correlated with the level of fecal lithocholic acid (LCA). However, the level of fecal LCA was negatively associated with the abundance of the potential pathogen that was enriched in children with NAFLD. Pediatric NAFLD is characterized by an altered profile of gut microbiota and fecal bile acids. This study demonstrates that the disease-associated gut microbiota is linked with decreased concentrations of secondary bile acids in the feces. The disease-associated gut microbiota likely inhibits the conversion of primary to secondary bile acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459332 | PMC |
http://dx.doi.org/10.3389/fcimb.2021.698852 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus.
This review paper delves into the role of probiotics and food bioactives in influencing gut health and overall well-being, within the context of probiotics and food bioactives, emphasizing their roles in modulating inflammation, gut microbiota, and metabolic health. Probiotics are defined as live microorganisms that confer health benefits to the host, primarily through their impact on the gut microbiome; a complex community of microorganisms crucial for maintaining health. The review aims to elucidate how probiotics, incorporated into both traditional and modern food systems, can enhance gut health and address metabolic disorders.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).
Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.
Metab Brain Dis
January 2025
The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541199, Guangxi, China.
Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!