Unlabelled: Survey in the cotton fields of Coimbatore and Erode districts confirmed the presence of three different thrips species including, , , and Their identity was confirmed through morphometric analysis and molecular characterization. Tobacco streak virus (TSV) was detected in the leaves and pollen grains of both parthenium and cotton plants collected from infected cotton fields. The presence of TSV was confirmed through immuno-detection by direct antigen coating enzyme-linked immuno sorbent assay (DAC-ELISA). Further confirmation was accomplished by reverse transcriptase polymerase chain reaction (RT-PCR) using TSV coat protein-specific primers. Other than parthenium, weed plants in the cotton field such as , , and sp. were also confirmed for TSV infection through RT-PCR. plants acts as a silent carrier of TSV and they occasionally produced symptoms. Among all the randomly collected thrips samples, two pooled samples were detected positive for TSV through RT-PCR.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02967-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417199 | PMC |
http://dx.doi.org/10.1007/s13205-021-02967-6 | DOI Listing |
ACS Omega
January 2025
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
Sporopollenin is a plant polymer present in the exine of the pollen grains that comprises two layers: the endexine and the ektexine. It possesses remarkable mechanical, thermal, and chemical stability and is also highly recalcitrant to hydrolysis. The chemical backbone of sporopollenin mostly consists of a polyhydroxylated aliphatic component and polyketide-derived aliphatic α-pyrone elements.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Laboratório de Ecologia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil.
The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China.
The accurate callose deposition plays important roles in pollen wall formation and pollen fertility. As a direct target of miRNA160, ARF17 participate in the formation of the callose wall. However, the impact of ARF17 misexpression in microsporocytes on callose wall formation and pollen fertility remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!