Electrostatic motors have traditionally required high voltage and provided low torque, leaving them with a vanishingly small portion of the motor application space. The lack of robust electrostatic motors is of particular concern in microsystems because inductive motors do not scale well to small dimensions. Often, microsystem designers have to choose from a host of imperfect actuation solutions, leading to high voltage requirements or low efficiency and thus straining the power budget of the entire system. In this work, we describe a scalable three-dimensional actuator technology that is based on the stacking of thin microhydraulic layers. This technology offers an actuation solution at 50 volts, with high force, high efficiency, fine stepping precision, layering, low abrasion, and resistance to pull-in instability. Actuator layers can also be stacked in different configurations trading off speed for force, and the actuator improves quadratically in power density when its internal dimensions are scaled-down.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433320PMC
http://dx.doi.org/10.1038/s41378-021-00240-7DOI Listing

Publication Analysis

Top Keywords

speed force
8
electrostatic motors
8
high voltage
8
multilayer microhydraulic
4
microhydraulic actuators
4
actuators speed
4
force configurations
4
configurations electrostatic
4
motors traditionally
4
traditionally required
4

Similar Publications

The extracellular vesicle release in red blood cell concentrates reflects progressive accumulation of storage lesions and could represent a new measure to be implemented routinely in blood centres in addition to haemolysis. Nevertheless, there is currently no standardized isolation protocol. In a previous publication, we developed a reproducible ultracentrifugation-based protocol (20,000 ×  protocol) that allows to classify red blood cell concentrates into three cohorts according to their vesiculation level.

View Article and Find Full Text PDF

Experimental dataset of a model-scale ship in calm water and waves.

Data Brief

February 2025

Maritime Engineering Research Group, School of Engineering, University of Southampton, SO16 7QF UK.

This article presents data derived from a series of experiments conducted on a scaled model ship, examining its performance in both calm water and regular waves. The acquisition of high-quality experimental data is essential for refining Computational Fluid Dynamics (CFD) simulations and modifying analytical methods to evaluate the powering performance of ships. Despite notable advancements in numerical models, there exists a corresponding imperative to elevate the precision of measurements and insights obtained from towing tank tests.

View Article and Find Full Text PDF

This work presents an optimization of the construction, treatment, and activation of 3D-printed electrochemical sensors (E-3D). For this, was used a 2-full factorial design examining three key variables at two levels: electrode height, electrode diameter, and printing speed. Moreover, it evaluates various physical, chemical, and electrochemical methods to treat and activate the E-3D surface.

View Article and Find Full Text PDF

Dataset of running kinematics, kinetics and muscle activation at different speeds, surface gradients, cadences and with forward trunk lean.

Data Brief

June 2024

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Nutrition and Movement Sciences, Maastricht, the Netherlands.

Data Collection Process: This dataset includes running biomechanics measured using an instrumented treadmill combined with three- dimensional motion capture and surface muscle activation among 19 healthy participants (10 males, 9 females, mean ± SD age 23.6 ± 3.7 years, body height 174.

View Article and Find Full Text PDF

Objective: To investigate the protective effects of ankle braces in patients with functional ankle instability.

Methods: This retrospective study involved 30 participants recruited from January 2023 to December 2023 at School of Physical Education, Nanchang University. These participants were divided into an ankle brace group wearing braces and a control group without braces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!