The wide adoption of inertial microfluidics in biomedical research and clinical settings, such as rare cell isolation, has prompted the inquiry of its underlying mechanism. Although tremendous improvement has been made, the mechanism of inertial migration remains to be further elucidated. Contradicting observations are not fully reconciled by the existing theory, and details of the inertial migration within channel cross sections are missing in the literature. In this work, for the first time, we mapped the inertial migration pathways within channel cross section using high-speed imaging at the single-particle level. This is in contrast to the conventional method of particle streak velocimetry (PSV), which provides collective information. We also applied smoothed particle hydrodynamics (SPH) to simulate the transient motion of particles in 3D and obtained cross-sectional migration trajectories that are in agreement with the high-speed imaging results. We found two opposing pathways that explain the contradicting observations in rectangular microchannels, and the force analysis of these pathways revealed two metastable positions near the short walls that can transition into stable positions depending on the flow condition and particle size. These new findings significantly improve our understanding of the inertial migration physics, and enhance our ability to precisely control particle and cell behaviors within microchannels for a broad range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433405 | PMC |
http://dx.doi.org/10.1038/s41378-020-00217-y | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.
View Article and Find Full Text PDFPhys Rev E
November 2024
Ecole Nationale Supérieure de Génie Mathématique et Modélisation (ENSGMM), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Republique du Bénin.
On applying a small bias force, nonequilibrium systems may respond in paradoxical ways such as with giant negative mobility (GNM)-a large net drift opposite to the applied bias, or giant positive mobility (GPM)-an anomalously large drift in the same direction as the applied bias. Such behaviors have been extensively studied in idealized models of externally driven passive inertial particles. Here, we consider a minimal model of a memory-driven active particle inspired from experiments with walking and superwalking droplets, whose equation of motion maps to the celebrated Lorenz system.
View Article and Find Full Text PDFBiomicrofluidics
December 2024
Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea.
Considerable attention has been given to elasto-inertial microfluidics, which are widely applied for the focusing, sorting, and separation of particles/cells. In this work, we propose a novel yet simple fabrication process for a microchannel with a cruciform section, where elasto-inertial particle focusing is explored in a viscoelastic fluid. SU-8 master molds for polydimethylsiloxane (PDMS) structures were fabricated via standard photolithography, and then plasma bonding, following self-alignment between two PDMS structures, was performed for the formation of a microchannel with a cruciform section.
View Article and Find Full Text PDFBiomicrofluidics
September 2024
Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada.
Inertial microfluidic devices have gained attention for point-of-need (PoN) sample preparation. Yet, devices capable of simultaneous particle-bacteria solution exchange and separation are low in throughput, hindering their applicability to PoN settings. This paper introduces a microfluidic centrifuge for high-throughput solution exchange and separation of microparticles, addressing the need for processing large sample volumes at elevated flow rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!