There is increasing interest in utilizing in vitro cultures as patient avatars to develop personalized treatment for cancer. Typical cultures utilize Matrigel-coated plates and media to promote the proliferation of cancer cells as spheroids or tumor explants. However, standard culture conditions operate in large volumes and require a high concentration of cancer cells to initiate this process. Other limitations include variability in the ability to successfully establish a stable line and inconsistency in the dimensions of these microcancers for in vivo drug response measurements. This paper explored the utility of microfluidics in the cultivation of cancer cell spheroids. Six patient-derived xenograft (PDX) tumors of high-grade serous ovarian cancer were used as the source material to demonstrate that viability and epithelial marker expression in the microfluidic cultures was superior to that of Matrigel or large volume 3D cultures. To further demonstrate the potential for miniaturization and multiplexing, we fabricated multichamber microfluidic devices with integrated microvalves to enable serial seeding of several chambers followed by parallel testing of several drug concentrations. These valve-enabled microfluidic devices permitted the formation of spheroids and testing of seven drug concentrations with as few as 100,000 cancer cells per device. Overall, we demonstrate the feasibility of maintaining difficul-to-culture primary cancer cells and testing drugs in a microfluidic device. This microfluidic platform may be ideal for drug testing and personalized therapy when tumor material is limited, such as following the acquisition of biopsy specimens obtained by fine-needle aspiration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433468 | PMC |
http://dx.doi.org/10.1038/s41378-020-00201-6 | DOI Listing |
Viruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFThis study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.
View Article and Find Full Text PDFViruses
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!