The memristor has been regarded as a promising candidate for constructing a neuromorphic computing platform that is capable of confronting the bottleneck of the traditional von Neumann architecture. Here, inspired by the working mechanism of the G-protein-linked receptor of biological cells, a novel double-layer memristive device with reduced graphene oxide (rGO) nanosheets covered by chitosan (an ionic conductive polymer) as the channel material is constructed. The protons in chitosan and the functional groups in rGO nanosheets imitate the functions of the ligands and receptors of biological cells, respectively. Smooth changes in the response current depending on the historical applied voltages are observed, offering a promising pathway toward biorealistic synaptic emulation. The memristive behavior is mainly a result of the interaction between protons provided by chitosan and the defects and functional groups in the rGO nanosheets. The channel current is due to the hopping of protons through functional groups and is limited by the traps in the rGO nanosheets. The transition from short-term to long-term potentiation is achieved, and learning-forgetting behaviors of the memristor mimicking those of the human brain are demonstrated. Overall, the bioinspired memristor-type artificial synaptic device shows great potential in neuromorphic networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433456 | PMC |
http://dx.doi.org/10.1038/s41378-020-00189-z | DOI Listing |
J Hazard Mater
January 2025
Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:
The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Advanced Materials Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar, Marathwada University, Chhatrapati Sambhajinagar, 431004, M.S, India.
The rGO-based 5% Ni-doped CoO/TiO (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite's morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.
View Article and Find Full Text PDFLangmuir
December 2024
School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
Nanocomposite films made from graphene oxide (GO) and MXene have a dense layered structure due to nanosheet self-stacking, limiting their dye adsorption performance. In this study, acid-base neutralization reactions are used to induce MXene/reduced graphene oxide (RGO) films bulging, which opens the stacked layer structure within the membrane and enhances MB adsorption performance. The effects of the pH, temperature, contact time, and initial concentration of MB on the adsorption performance are further investigated.
View Article and Find Full Text PDFTalanta
December 2024
National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China. Electronic address:
The development of materials toward ppb-level nitric oxide (NO) sensing at room temperature remains in high demand for the monitoring of respiratory inflammatory diseases. In order to find an iron-containing molecule without steric hindrance to combine with graphene for room temperature NO gas sensing, here a supramolecular assembly of ferrocene (Fc) and reduced graphene oxide (rGO) was designed and prepared for NO sensing. The assembly of Fc/rGO was characterized using FT-IR, TEM, and XPS measurements.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China. Electronic address:
Macro-assembled silicon-based films can be taken into account as a possible anode material for the lithium ion batteries (LIBs) in portable electronics. However, most previously proposed preparation strategies are labor-intensive, intricate, and not appropriate for large-scale manufacturing. Herein, a multifunctional flexible silicon/carbon nanotube/reduced graphene oxide (Si/CNT/rGO) film was fabricated by one-step coating method based on the lyotropic nematic liquid crystals of graphene oxide (GO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!