Similar Publications

Herein we present our studies on the solvent-controlled difunctionalization of alkenes utilizing chlorodifluoroacetic acid (CDFA) and α-halo carboxylic acids for the synthesis of γ-lactones, γ-lactams and α,α-difluoroesters. Mechanistic insights revealed that photocatalytic reductive mesolytic cleavage of the C-X bond delivers elusive α-carboxyl alkyl radicals. In the presence of an olefin molecule, this species acts as a unique bifunctional intermediate allowing for stipulated formation of C-O, C-N and C-H bonds on Giese-type adducts single electron transfer (SET) or hydrogen atom transfer (HAT) events.

View Article and Find Full Text PDF

Solvent-controlled synthesis of Ti-based porphyrinic metal-organic frameworks for the selective photocatalytic oxidation of amines.

J Colloid Interface Sci

December 2022

Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:

The photocatalytic activity of metal-organic frameworks (MOFs) can be managed by the milieu of synthesis. Herein, N,N'-dimethylacetamide (DMA) and N,N'-diethylformamide (DEF) were employed as solvents for the synthesis of two Ti-based porphyrinic MOFs, namely Ti-PMOF-DMA and Ti-PMOF-DEF, from tetrabutyl orthotitanate and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid). Notably, both DMA and DEF were adsorbed onto the Ti-oxo clusters of the two MOFs to shape their properties.

View Article and Find Full Text PDF

Divergent synthesis is a powerful strategy for the fast assembly of different molecular scaffolds from identical starting materials. We describe here a solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes with sulfonyl chlorides for the direct construction of highly functionalized cyclopentenones and dihydropyranols that widely exist in bioactive molecules and natural products. Density functional theory calculations suggest that a unique ,-dimethylacetamide-assisted 1,2-hydrogen transfer of alkoxy radicals is responsible for the cyclopentenone formation, whereas a C-C cleavage accounts for the selective production of dihydropyranols in acetonitrile and water at 50 °C.

View Article and Find Full Text PDF

A large number of literatures have investigated the selective photocatalytic reaction of 4-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB). Most of them mainly study the contribution of substrate, excitation wavelength, exposure time, pH and added cations to plasmon-assisted surface catalytic reactions. However, we mainly study focuses on the effects of solvents on the dimerization of PATP to DMAB under the action of Ag nanoparticles (NPs).

View Article and Find Full Text PDF

Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres.

Phys Chem Chem Phys

April 2015

College of Environmental and Biological Engineering, Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China.

Semimetal bismuth (Bi), as an emerging non-noble metal-based cocatalyst and plasmonic photocatalyst, has attracted significant attention. In this work, a one-pot solvent-controlled synthesis strategy was utilized for the in situ-deposition of plasmonic Bi nanoparticles onto the surfaces of (BiO)2CO3 microspheres (BOC-WE) using bismuth citrate, sodium carbonate, and ethylene glycol as precursors. The introduction of the Bi nanoparticles has a pivotal effect on the morphology, optical and photocatalytic performance of the pristine (BiO)2CO3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!