Divergent synthesis is a powerful strategy for the fast assembly of different molecular scaffolds from identical starting materials. We describe here a solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes with sulfonyl chlorides for the direct construction of highly functionalized cyclopentenones and dihydropyranols that widely exist in bioactive molecules and natural products. Density functional theory calculations suggest that a unique ,-dimethylacetamide-assisted 1,2-hydrogen transfer of alkoxy radicals is responsible for the cyclopentenone formation, whereas a C-C cleavage accounts for the selective production of dihydropyranols in acetonitrile and water at 50 °C. Given the simple and mild reaction conditions, excellent functional group compatibility, forming up to four chemical bonds, and tunable selectivity, it may find wide applications in synthetic chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409468 | PMC |
http://dx.doi.org/10.1039/d1sc03416b | DOI Listing |
Chem Sci
July 2024
Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
Herein we present our studies on the solvent-controlled difunctionalization of alkenes utilizing chlorodifluoroacetic acid (CDFA) and α-halo carboxylic acids for the synthesis of γ-lactones, γ-lactams and α,α-difluoroesters. Mechanistic insights revealed that photocatalytic reductive mesolytic cleavage of the C-X bond delivers elusive α-carboxyl alkyl radicals. In the presence of an olefin molecule, this species acts as a unique bifunctional intermediate allowing for stipulated formation of C-O, C-N and C-H bonds on Giese-type adducts single electron transfer (SET) or hydrogen atom transfer (HAT) events.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2022
Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
The photocatalytic activity of metal-organic frameworks (MOFs) can be managed by the milieu of synthesis. Herein, N,N'-dimethylacetamide (DMA) and N,N'-diethylformamide (DEF) were employed as solvents for the synthesis of two Ti-based porphyrinic MOFs, namely Ti-PMOF-DMA and Ti-PMOF-DEF, from tetrabutyl orthotitanate and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid). Notably, both DMA and DEF were adsorbed onto the Ti-oxo clusters of the two MOFs to shape their properties.
View Article and Find Full Text PDFChem Sci
September 2021
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
Divergent synthesis is a powerful strategy for the fast assembly of different molecular scaffolds from identical starting materials. We describe here a solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes with sulfonyl chlorides for the direct construction of highly functionalized cyclopentenones and dihydropyranols that widely exist in bioactive molecules and natural products. Density functional theory calculations suggest that a unique ,-dimethylacetamide-assisted 1,2-hydrogen transfer of alkoxy radicals is responsible for the cyclopentenone formation, whereas a C-C cleavage accounts for the selective production of dihydropyranols in acetonitrile and water at 50 °C.
View Article and Find Full Text PDFHeliyon
April 2019
College of Physical, Liaoning University, Shenyang 110036, China.
A large number of literatures have investigated the selective photocatalytic reaction of 4-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB). Most of them mainly study the contribution of substrate, excitation wavelength, exposure time, pH and added cations to plasmon-assisted surface catalytic reactions. However, we mainly study focuses on the effects of solvents on the dimerization of PATP to DMAB under the action of Ag nanoparticles (NPs).
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2015
College of Environmental and Biological Engineering, Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China.
Semimetal bismuth (Bi), as an emerging non-noble metal-based cocatalyst and plasmonic photocatalyst, has attracted significant attention. In this work, a one-pot solvent-controlled synthesis strategy was utilized for the in situ-deposition of plasmonic Bi nanoparticles onto the surfaces of (BiO)2CO3 microspheres (BOC-WE) using bismuth citrate, sodium carbonate, and ethylene glycol as precursors. The introduction of the Bi nanoparticles has a pivotal effect on the morphology, optical and photocatalytic performance of the pristine (BiO)2CO3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!