-Inositol Restores Tilapia's Ability Against Infection by in Higher Water Temperature.

Front Immunol

State Key Laboratory of Bio-Control, School of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, China.

Published: November 2021

Bacterial infection presents severe challenge to tilapia farming, which is largely influenced by water temperature. However, how water temperature determines tilapias' survival to infection is not well understood. Here, we address this issue from the perspective of metabolic state. Tilapias were more susceptible to infection at 33°C than at 18°C, which is associated with differential metabolism of the fish. Compared to the metabolome of tilapia at 18°C, the metabolome at 33°C was characterized with increased an tricarboxylic acid cycle and a reduced level of -inositol which represent the most impactful pathway and crucial biomarker, respectively. These alterations were accompanied with the elevated transcriptional level of 10 innate immune genes with infection time, where , , , and exhibited a higher expression at 33°C than at 18°C and was attenuated by exogenous -inositol in both groups. Interestingly, exogenous -inositol inactivated the elevated TCA cycle inhibiting the enzymatic activity of succinate dehydrogenase and malate dehydrogenase. Thus, tilapias showed a higher survival ability at 33°C. Our study reveals a previously unknown relationship among water temperature, metabolic state, and innate immunity and establishes a novel approach to eliminate bacterial pathogens in tilapia at higher water temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462736PMC
http://dx.doi.org/10.3389/fimmu.2021.682724DOI Listing

Publication Analysis

Top Keywords

water temperature
20
higher water
8
metabolic state
8
33°c 18°c
8
exogenous -inositol
8
infection
5
water
5
temperature
5
-inositol
4
-inositol restores
4

Similar Publications

Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization.

Pharmaceutics

December 2024

Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.

Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Climate Change-Induced Decline in Succulent in Namibia's Arid Regions.

Plants (Basel)

January 2025

Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria P.O. Box X20, South Africa.

The global rise in temperatures due to climate change has made it difficult even for specialised desert-adapted plant species to survive on sandy desert soils. Two of Namibia's iconic desert-adapted plant species, and the quiver tree , have recently been shown to be under threat because of climate change. In the current study, three ecologically important Namibian milk bushes were evaluated for their climate change response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!