WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M.

J Inflamm Res

Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Published: September 2021

Background: Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family.

Methods: The expression and regulation of in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from -deficient and wild-type mice.

Results: We found that IL-6/sIL-6R and OSM induce the expression of in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from deficient mice compared to cells from wild-type mice. OSM did not affect mRNA expression in bone marrow cell cultures, explained by the finding that and are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from or wild-type mice. Furthermore, we found that expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts.

Conclusion: These findings demonstrate that OSM is a robust stimulator of mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457865PMC
http://dx.doi.org/10.2147/JIR.S323435DOI Listing

Publication Analysis

Top Keywords

bone marrow
20
calvarial osteoblasts
12
cells bone
12
bone
9
mouse calvarial
8
acts negative
8
negative feedback
8
feedback regulator
8
osteoclast formation
8
signaling pathways
8

Similar Publications

Intravesical Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer rarely leads to disseminated BCG infections, most of which occur early after BCG instillations or in immunocompromised patients. We report late-onset disseminated BCG infection after intravesical BCG immunotherapy in a non-immunocompromised patient. A 78-year-old non-immunocompromised man was admitted with fever and hepatosplenomegaly.

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Eltrombopag is used with first-line immunosuppressive therapy for adult aplastic anemia, although its practical utility in childhood remains unclear. We retrospectively analyzed the outcomes of pediatric patients who received eltrombopag in Japan. Of the 27 eligible patients, 23 (85%) were previously treated, and 15 (56%) had severe or very-severe disease.

View Article and Find Full Text PDF

Vascularized composite allotransplantation (VCA) represents a clinical challenge for transplant therapy, as it involves different tissues with unique immunogenicity. Even when receiving immunosuppressive therapy, they are more vulnerable to severe hypoxia, microvascular damage, and ultimately the rejection or chronic graft dysfunction after transplantation. This study aimed to develop a surgical protocol for VCA of the ear in a porcine biomodel in the absence of immunosuppression, maintaining the in vitro co-culture of the allograft and assessing their relationship with allograft survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!