Multizonal modeling of SARS-CoV-2 aerosol dispersion in a virtual office building.

Build Environ

Building Equipment Research Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Published: December 2021

The dispersion of indoor airborne contaminants across different zones within a mechanically ventilated building is a complex phenomenon driven by multiple factors. In this study, we modeled the indoor dispersion of airborne SARS-CoV-2 aerosols within a US Department of Energy detailed medium office prototype building using CONTAM software. The aim of this study is to improve our understanding about how different parts of a building can experience varying concentrations of the airborne viruses under different circumstances of release and mitigation strategies. Results indicate that unventilated stairwells can have significantly higher concentrations of airborne viruses. The mitigation strategies of morning and evening flushing of conditioned zones were not found to be very effective. Instead, a constant high percentage of outdoor air in the supply mix, and the use of masks, portable HEPA air cleaners, MERV 13 or higher HVAC air filters, and ultraviolet germicidal irradiation disinfection were effective strategies to prevent airborne viral contamination in the majority of the simulated office building.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451446PMC
http://dx.doi.org/10.1016/j.buildenv.2021.108347DOI Listing

Publication Analysis

Top Keywords

office building
8
concentrations airborne
8
airborne viruses
8
mitigation strategies
8
building
5
airborne
5
multizonal modeling
4
modeling sars-cov-2
4
sars-cov-2 aerosol
4
aerosol dispersion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!