Background: Aedes aegypti and Ae. albopictus are important vectors of human diseases such as dengue, chikungunya, and zika. In Sri Lanka, they have been responsible for transmitting dengue virus. One of the most important parameters influencing the likelihood of arbovirus transmission is the age structure of the mosquito population. However, mosquito age is difficult to measure with accuracy. This study aims to construct multivariate calibration models using the transcriptional abundance of three age-responsive genes: Ae15848 (calcium-binding protein), Ae8505 (structural component of cuticle), and Ae4274 (fizzy cell cycle/cell division cycle 20).
Methods: The transcriptional age-grading technique was applied to determine the chronological age of Ae. aegypti and Ae. albopictus female mosquito populations from Sri Lanka using the age-responsive genes Ae15848, Ae8505, and Ae4274. Furthermore, Ae. aegypti samples obtained from colonies reared at two temperatures (23 and 27 °C) were used to investigate the influence of temperature on this age-grading technique. Expression levels of these three genes were quantified using reverse transcription qualitative PCR (qRT-PCR), and results were normalized against the housekeeping gene ribosomal gene S17 (RpS17).
Results: The expression of Ae15848 and Ae8505 decreased with the age of mosquitoes and showed the most significant and consistent change while expression of Ae4274 increased with age. The multivariate calibration models showed > 80% correlation between expression of these age-responsive genes and the age of female mosquitoes at both temperatures. At 27 °C the accuracy of age predictions using the models was 2.19 (± 1.66) days and 2.58 (± 2.06) days for Ae. aegypti and Ae. albopictus females, respectively. The accuracy of the model for Ae. aegypti at 23 °C was 3.42 (± 2.74) days.
Conclusions: An adult rearing temperature difference of 4 °C (23-27 °C) did not significantly affect the age predictions. The calibration models created during this study could be successfully used to estimate the age of wild Ae. aegypti and Ae. albopictus mosquitoes from Sri Lanka.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474866 | PMC |
http://dx.doi.org/10.1186/s13071-021-04994-x | DOI Listing |
J Am Mosq Control Assoc
January 2025
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.
View Article and Find Full Text PDFFront Chem
December 2024
African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.
Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.
Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.
Med Vet Entomol
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.
View Article and Find Full Text PDFSci Rep
December 2024
National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
Dengue fever is a vector-borne, acute, febrile, and self-limiting systemic viral infection that affects tropical and subtropical regions, including Pakistan. Karachi has a significant burden of Aedes aegypti and Aedes albopictus due to suitable breeding sites, weather, and rapid and unplanned urbanization of squatter areas. The country has limited surveillance studies on circulating serotypes of the dengue virus and the patient's clinical features evolving over temporal changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!