Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Workplace measurements in the past have shown that the applicable occupational exposure limits (OELs) are regularly exceeded in practice when high-emission welding processes are applied. The InterWeld pilot study was planned as part of an intervention study to show under which conditions compliance with the OEL is achievable in gas metal arc welding (GMAW) with solid wire. The investigation focussed on local exhaust ventilation, i.e. captor hoods and welding torches with integrated fume extraction.
Methods: Forty tests with hand-guided GMAW were configured by experts with regard to all technical parameters and carried out by a professional welder. Effects of protective measures and process parameters on the exposure to respirable welding fumes and airborne manganese (Mn), chromium, nickel, and hexavalent chromium were investigated. Personal sampling was carried out in the welder's breathing zone outside the face shield at high flow rates (10 l min-1) in order to achieve sufficient filter loading. Particle masses and welding fume concentrations were determined by weighing the sampling filters. Metal concentrations were analysed by inductive coupled plasma mass spectrometry. In order to evaluate the effects on exposure, the measurements were performed under similar conditions. The data were analysed descriptively and with mixed linear models. For measurements below the limit of detection, the exposure level was estimated using multiple imputation.
Results: Two to five times higher exposures to respirable welding fumes and airborne metals were observed during welding of 10 mm sheets than during welding of 2- or 3-mm sheets. Welding fume and Mn exposure were reduced by 70 and 90% when on-torch extraction or a captor hood was applied. Other airborne metals were reduced to a similar extent. Modifications on welding parameters led to a reduction of exposure against respirable particles by 51 up to 54%.
Conclusions: Although proper extraction at the point of origin and lower-emitting process variants ensure a drastic reduction in exposure, compliance with current OELs is not guaranteed. In order to ensure adequate health protection, especially at workplaces where thick sheets with long relative arc times are processed, there is a need for technical development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxab082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!