Insulin degludec/insulin aspart (IDegAsp) is a novel co-formulation of 70% insulin degludec and 30% insulin aspart. The present meta-analysis was conducted to assess the efficacy and safety of IDegAsp compared with a conventional premixed insulin or basal insulin. We extracted data from citation databases, including PubMed, EMBASE, and the Cochrane Library, since inception to 2021. We calculated the mean differences for hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), self-measured mean glucose, and postprandial glucose (PPG) and odds ratios for confirmed hypoglycemia events. Compared with twice-daily conventional premixed insulin, twice-daily IDegAsp showed a similar effect on changes in HbA1c, but it significantly reduced FPG and self-measured mean glucose levels. Furthermore, compared to once-daily basal insulin, once-daily IDegAsp had a similar effect on changes in HbA1c, but it significantly reduced self-measured mean glucose and PPG levels. The risk of overall confirmed hypoglycemia was similar between treatments; however, the risk of nocturnal hypoglycemia events was significantly lower with IDegAsp than with conventional premixed insulin and basal insulin. Thus, IDegAsp was more effective than conventional premixed insulin and basal insulin at reducing blood glucose with fewer nocturnal hypoglycemia events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470485PMC
http://dx.doi.org/10.3390/metabo11090639DOI Listing

Publication Analysis

Top Keywords

conventional premixed
20
premixed insulin
20
basal insulin
20
insulin basal
16
insulin
14
self-measured glucose
12
hypoglycemia events
12
efficacy safety
8
insulin degludec/insulin
8
degludec/insulin aspart
8

Similar Publications

Temporal-thermal enhancement of porous cooking burners.

Sci Rep

December 2024

Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.

Porous combustion has drawn vast attention over the last few decades leading to a variety of progressing applications particularly in industrial kitchens and household appliances that require time sensitive heating. The present study experimentally investigates the relationship between cooking duration and the thermal efficiency of a cooking pot heated on a porous burner providing a valuable insights into the effectiveness of the heating process in terms of both time and fuel consumption. To facilitate this investigation, a dedicated test bench is designed and constructed, equipped with thermometers and timer to effectively monitor the temporal/thermal behavior of the heating process.

View Article and Find Full Text PDF

Nano-AlO derived from recyclable sources emerges as a promising sustainable solution for enhancing diesel engine efficiency while mitigating emissions. However, a lack of an in-depth understanding of the health hazard aspect still challenges its commercial applications. To this end, nano-AlO/diesel (NAD) blends prepared via ultrasonic homogenization were experimentally and analytically investigated under various injection timings and excess air coefficients to explore the potential of nano-AlO for balancing energy performance and emissions.

View Article and Find Full Text PDF

Alcohol fuels with different carbon numbers such as propanol (C3), butanol (C4) and pentanol (C5) have lately become popular in both conventionally and RCCI-operated diesel engines thanks to their high cetane number (CN) and oxygen content along with lower latent heat of evaporation, which are useful for reducing the high CO/HC emissions, whereas RCCI mode still suffers from these emissions. Therefore, in this study, these three alcohol fuels with carbon numbers ranging from C3 to C5 were employed as low-reactivity fuel (LRF) in a single-cylinder RCCI engine under a constant engine speed of 2400 rpm and varying loadings (from 20 to 60% of full load at 20% intervals) and premixed ratios (from 0 to 60% with 15% intervals) when using B7 as high-reactivity fuel (HRF). In the experimental study, the effect of oxygen content, latent heat of evaporation, and cetane number which changes linearly with the carbon number of alcohols used, on exhaust emissions, were analyzed.

View Article and Find Full Text PDF

Rapid urbanization has led to a high demand for concrete, causing a significant depletion of vital natural resources, notably river sand, which is crucial in the manufacturing process of concrete. As a result, there is a growing need for environmentally sustainable alternatives to fine aggregate in concrete. Quarry dust (QD) has evolved as a viable and ecologically friendly substitute in response to this demand.

View Article and Find Full Text PDF

Evaluation of biocompatibility and bioactive potential of Well-Root PT by comparison with ProRoot MTA and Biodentine.

J Dent Sci

October 2024

Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Republic of Korea.

Background/purpose: Well-Root PT is a novel bioceramic material developed to overcome limitations of conventional calcium silicate cements. The purpose of this study was to assess the biocompatibility and bioactivity of a premixed putty-type cement, Well-Root PT.

Materials And Methods: Identical cylindrical samples were prepared from ProRoot MTA, Biodentine, and Well-Root PT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!