Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson's Disease Dementia.

Metabolites

Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK.

Published: August 2021

Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer's disease (ADD) and Huntington's disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson's disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases. Brain tissue was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of 26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly decreased in the cerebellum ( = 0.008), substantia nigra ( = 0.02), and medulla ( = 0.008) of PDD cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases, as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases, and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally selective disruption of pantothenic acid levels across PDD, ADD, and HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468190PMC
http://dx.doi.org/10.3390/metabo11090569DOI Listing

Publication Analysis

Top Keywords

pantothenic acid
24
substantia nigra
12
acid vitamin
8
parkinson's disease
8
disease dementia
8
acid decreased
8
motor cortex
8
cortex primary
8
primary visual
8
visual cortex
8

Similar Publications

The cell-free supernatant of (LCFS) is considered a potential natural antimicrobial agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of CMCC(B)54002 (_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic pathways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA biosynthesis, and the TCA cycle.

View Article and Find Full Text PDF

Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.

View Article and Find Full Text PDF

Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis.

J Ethnopharmacol

December 2024

State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China. Electronic address:

Ethnopharmacological Relevance: Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear.

View Article and Find Full Text PDF

Background: Folate is an important one-carbon cycle donor involved in the synthesis of purines, thymine, pantothenic acid, serine and glycine. The present study aimed to explore the capacity of Lactiplantibacillus plantarum subsp. plantarum (L.

View Article and Find Full Text PDF
Article Synopsis
  • * The diagnosis of PKAN relies on clinical observations, a specific brain MRI finding called the "eye of the tiger," and genetic testing for mutations in the pantothenate kinase 2 (PANK2) gene, which plays a crucial role in coenzyme A (CoA) production.
  • * Research shows that combining multitarget supplements (like pantothenate, pantethine, omega-3, and vitamin E) with standard
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!