We investigated the effects of a feed containing larvae injected with bacteria on the growth and immunity of . The feed was prepared by replacing fishmeal in feed with 25 and 50% nonimmunized (HIL25, HIL50) or immunized HIL (ImHIL25, ImHIL50), and its protein:fat:carbohydrate ratio was 45:15:18. ImHIL extracts showed inhibitory activity against fish pathogenic bacteria. Both red blood cell count and insulin-like growth factor-1 as the growth indicator were the highest among the groups at week 6 after feeding in the ImHIL50 group. As immune indicators, blood aspartate aminotransferase levels were lower in the ImHIL25 and ImHIL50 groups than in that of other groups at week 6 after feeding, and lysozyme content was significantly higher in ImHIL25 and ImHIL50. The above results demonstrate that ImHIL has a beneficial effect on the improvement of growth and immunity. Accordingly, we suggest that ImHIL has the potential to be a good feed source in aquaculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467036 | PMC |
http://dx.doi.org/10.3390/insects12090801 | DOI Listing |
Appl Environ Microbiol
December 2024
School of Medicine, Nankai University, Tianjin, Tianjin, China.
is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.
View Article and Find Full Text PDFJ Virol
December 2024
Agriculture College and Research Institute, Kudumiyanmalai, Pudukottai, Tamil Nadu, India.
Tomato is an important crop worldwide, but groundnut bud necrosis virus (GBNV) often hampers its growth. This study investigates the antiviral potential of bacterial endophytes, including CNEB54, CNEB4, CNEB26, and BAVE5 against GBNV, as well as their ability to enhance immunity and growth in tomato. All four bacterial isolates demonstrated a significant delay in GBNV symptom development 10 days post-inoculation, with disease incidence ranging from 18% to 36% compared to 84% in control.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Massachusetts Institute of Technology, Cambridge, MA, United States.
Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.
View Article and Find Full Text PDFIUBMB Life
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.
View Article and Find Full Text PDFCancer Sci
January 2025
Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!