Effect of Feed Containing Larvae Immunized by Injection on the Growth and Immunity of Rainbow Trout ().

Insects

Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea.

Published: September 2021

We investigated the effects of a feed containing larvae injected with bacteria on the growth and immunity of . The feed was prepared by replacing fishmeal in feed with 25 and 50% nonimmunized (HIL25, HIL50) or immunized HIL (ImHIL25, ImHIL50), and its protein:fat:carbohydrate ratio was 45:15:18. ImHIL extracts showed inhibitory activity against fish pathogenic bacteria. Both red blood cell count and insulin-like growth factor-1 as the growth indicator were the highest among the groups at week 6 after feeding in the ImHIL50 group. As immune indicators, blood aspartate aminotransferase levels were lower in the ImHIL25 and ImHIL50 groups than in that of other groups at week 6 after feeding, and lysozyme content was significantly higher in ImHIL25 and ImHIL50. The above results demonstrate that ImHIL has a beneficial effect on the improvement of growth and immunity. Accordingly, we suggest that ImHIL has the potential to be a good feed source in aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467036PMC
http://dx.doi.org/10.3390/insects12090801DOI Listing

Publication Analysis

Top Keywords

growth immunity
12
imhil25 imhil50
12
feed larvae
8
groups week
8
week feeding
8
feed
5
growth
5
larvae immunized
4
immunized injection
4
injection growth
4

Similar Publications

is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.

View Article and Find Full Text PDF

Tomato is an important crop worldwide, but groundnut bud necrosis virus (GBNV) often hampers its growth. This study investigates the antiviral potential of bacterial endophytes, including CNEB54, CNEB4, CNEB26, and BAVE5 against GBNV, as well as their ability to enhance immunity and growth in tomato. All four bacterial isolates demonstrated a significant delay in GBNV symptom development 10 days post-inoculation, with disease incidence ranging from 18% to 36% compared to 84% in control.

View Article and Find Full Text PDF

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.

View Article and Find Full Text PDF

Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram?

Cancer Sci

January 2025

Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.

Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!