The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction.

J Cardiovasc Dev Dis

Heart Failure Unit, Department of Cardiology, A. O. dei Colli, Monaldi Hospital, 80131 Naples, Italy.

Published: August 2021

Treatment with β-blockers is the main strategy for managing patients with heart failure and reduced ejection fraction because of their ability to reverse the neurohumoral effects of the sympathetic nervous system, with consequent prognostic and symptomatic benefits. However, to date, they are underused, mainly because of the misconception that hypotension and bradycardia may worsen the haemodynamic status of patients with HFrEF and because of the presence of comorbidities falsely believed to be absolute contraindications to their use. To promote proper use of β-blockers in this article, we review the clinical pharmacology of β-blockers, the evidence of the beneficial effects of these drugs in heart failure with reduced ejection fraction, and the current guidelines for their use in clinical practice and in the presence of comorbidities (e.g., pulmonary disease, diabetes, atrial fibrillation, peripheral arterial disease, etc.). It is hoped that the practical approach discussed in this review will allow for a proper diffusion of knowledge about the correct use of β-blockers and the drug-disease interactions to achieve their increased use and titration, as well as for the selection of a specific agent with a view to a properly tailored approach for HFrEF patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468030PMC
http://dx.doi.org/10.3390/jcdd8090101DOI Listing

Publication Analysis

Top Keywords

heart failure
12
failure reduced
12
reduced ejection
12
ejection fraction
12
presence comorbidities
8
β-blockers
5
β-blockers heart
4
fraction treatment
4
treatment β-blockers
4
β-blockers main
4

Similar Publications

Aims: To investigate the distribution of left atrioventricular coupling index (LACI) among patients with heart failure and left ventricular ejection fraction (LVEF)<50% and to explore its association with the combined endpoint of all-cause death or HF hospitalization at long term follow-up.

Methods And Results: Patients with HF and LVEF<50% undergoing cardiac magnetic resonance (CMR) were evaluated. Patients with atrial fibrillation or flutter were excluded.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Rationale: Thrombotic microangiopathies (TMA) caused by malignant hypertension is an acute and critical disease among rare diseases. Although renal biopsy pathology is a golden indicator for diagnosing kidney disease, it cannot distinguish between primary and secondary TMA and requires a comprehensive diagnosis in conjunction with other laboratory tests and medical history.

Patient Concerns: A 33-year-old young man was hospitalized due to unexplained kidney failure.

View Article and Find Full Text PDF

This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!