Due to its size, shape, and inherent expression of pathogen-associated molecular patterns and invasion-assistant adhesion proteins, Burkholderia pseudomallei can easily attach to, and then be internalized by, dendritic cells (DCs), leading to more efficient antigen cross-presentation if modified as carrier. Herein, we engineered Burkholderia pseudomallei as a porous/hollow carrier (SB) for loading tumor lysates (L) and adjuvant CpG (C) to be used as a tumor vaccine (SB-LC). We found that the adhesion proteins of Burkholderia pseudomallei promote internalization of the SB-LC vaccine by DCs, and result in enhanced DC maturation and antigen cross-presentation. SB-LC induces robust cellular and humoral antitumor responses that synergistically inhibit tumor growth with minimal adverse side effects in several tumor models. Moreover, SB-LC vaccination reverses the immunosuppressive tumor microenvironment, apparently as a result of CD8-induced tumor ferroptosis. Thus, SB-LC is a potential model tumor vaccine for translating into a clinically viable treatment option.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.121141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!