A new diphenylamine derivative, scediphenylamine A (1), together with six phthalimide derivatives (2-7) and ten other known compounds (8-17) were obtained from the marine-derived fungus Scedosporium apiospermum F41-1 fed with synthetically prepared anthranilic acid and phthalimide. The structure and absolute configuration of the new compound were determined by HRMS, NMR, and X-ray crystallography. Evaluation of their lipid-lowering effect in 3T3-L1 adipocytes showed that scediphenylamine A (1), N-phthaloyl-tryptophan-methyl ester (4), 5-(1,3-dioxoisoindolin-2-yl) pentanamide (5), perlolyrine (10) and flazine (11) significantly reduced triglyceride level in 3T3-L1 cells by inhibiting adipogenic differentiation and synthesis with the EC values of 4.39, 2.79, 3.76, 0.09, and 4.52 μM, respectively. Among them, perlolyrine (10) showed the most potent activity, making it a candidate for further development as a potential agent to treat hyperlipidemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2021.105375 | DOI Listing |
Am J Gastroenterol
December 2024
Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China.
Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising therapy for irritable bowel syndrome (IBS). This clinical trial aims to evaluate the influence of taVNS on autonomic functions, rectal sensation, and acetylcholine (Ach) levels and to explore potential mechanisms involving gut microbiota and metabolic profiles.
Methods: This study was a single-center, single-blind, randomized controlled trial executed at the First Affiliated Hospital of USTC, Anhui, China.
Molecules
November 2024
Institute of Physics, University of Rzeszów, 35-310 Rzeszów, Poland.
The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.
View Article and Find Full Text PDFJ Proteome Res
January 2025
The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
Chronic dacryocystitis (CD) can result in severe complications and vision impairment due to ongoing microbial infections and persistent tearing. Tear fluid, which contains essential components vital for maintaining ocular surface health, has been investigated for its potential in the noninvasive identification of ocular biomarkers through metabolomics analysis. In this study, we employed UHPLC-MS/MS to analyze the tear metabolome of CD patients.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
The aim of this study was to investigate the levels of various tryptophan metabolites in patients with alcoholic liver disease (ALD) and metabolic-associated fatty liver disease (MAFLD) at different stages of the disease. The present study included 44 patients diagnosed with MAFLD, 40 patients diagnosed with ALD, and 14 healthy individuals in the control group. The levels of tryptophan and its 16 metabolites (3-OH anthranilic acid, 5-hydroxytryptophan, 5-methoxytryptamine, 6-hydroxymelatonin, indole-3-acetic acid, indole-3-butyric, indole-3-carboxaldehyde, indole-3-lactic acid, indole-3-propionic acid, kynurenic acid, kynurenine, melatonin, quinolinic acid, serotonin, tryptamine, and xanthurenic acid) in the serum were determined via high-performance liquid chromatography and tandem mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!