The monoaminergic neurotransmitter serotonin (5-HT) acts as a neuromodulator and is associated with a wide range of functions in fish. In this investigation, 5-HT immunoreactivity was studied in the central nervous system (CNS) of the viviparous mosquitofish Gambusia affinis. 5-HT-immunoreactive (5-HT-ir) cells/fibres were observed throughout the subdivisions of ventral and dorsal telencephalon including the olfactory bulb. Several intensely stained 5-HT-ir cells and/or fibres were detected in different areas of the hypothalamus as well as the proximal pars distalis of the pituitary gland. 5-HT-ir cells were restricted to the dorsal and ventral part of the pretectal diencephalic cluster, but only fibres were detected in the anterior, ventromedial and posterior subdivisions of the thalamic nucleus and in the preglomerular complex. In the mesencephalon, 5-HT-ir perikarya, and fibres were seen in the optic tectum, midbrain tegmentum and torus semicircularis. A cluster of prominently labelled 5-HT-ir neurons was observed in the superior raphe nucleus, whereas numerous 5-HT-ir fibres were distributed throughout the rhombencephalic divisions. In addition, a bundle of rostrocaudally running 5-HT-ir fibres was noticed in the spinal cord. This is the first detailed neuroanatomical study in a viviparous teleost, reporting a widespread distribution of 5-HT-ir somata and fibres in the CNS. The results of this study provide new insights into the evolutionarily well conserved nature of the monoaminergic system in the CNS of vertebrates and suggest a role for 5-HT in regulation of several physiological, behavioural and neuroendocrine functions in viviparous teleosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2021.102033 | DOI Listing |
Biol Lett
January 2025
Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA.
Reproductive senescence is common across taxa and females often show a predictable decline in fecundity after maturity. Attending to these age-dependent cues could help males make optimal mate choice decisions. Here, we examined reproductive senescence and male mate choice in the androdioecious mangrove rivulus (), where self-fertilizing hermaphrodites exist with rare males.
View Article and Find Full Text PDFSci Rep
January 2025
College of Life and Environmental Sciences, University of Exeter, Biosciences, Exeter, EX4 4QD, UK.
The mangrove killifish, Kryptolebias marmoratus, can reproduce with self-fertilisation, offering a unique and useful genetic tool for generation of genetic mutants and quick identification of mutated genes. From an ENU-mutated mangrove killifish line R228, we have isolated a novel mutant line, no-fin-ray/nfr in which homozygous mutant of adult fish fin ray development is largely reduced. Illumina RNAseq with 3 embryos each from mutants, siblings and the parental WT strain Hon9 (only 9 embryos as total) identified a mutation in the edaradd in a highly conserved C-terminal death domain.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Environmental Science and Policy, University of California, Davis, Davis, California, USA.
Plastic pollution threatens almost every ecosystem in the world. Critically, many animals consume plastic, in part because plastic particles often look or smell like food. Plastic ingestion is thus an evolutionary trap, a phenomenon that occurs when cues are decoupled from their previously associated high fitness outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Evolutionary Genetics Laboratory (eGL), Department of Fisheries and Aquaculture, Agricultural Faculty, Ankara University, Ankara, Turkey.
The main contributor to Türkiye's abundant freshwater fish biodiversity is its geographic location. This fauna consists of endemic, native, and non-native fish species. The introduction of Gambusia holbrooki Girard, 1859 to Lake Amik in the 1920s for the biological control of malaria was the first introduction of nonnative species to Türkiye.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Species interactions can contribute to species turnover when the outcomes of the interactions are context dependent (e.g., change along environmental gradients).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!