The Markov blanket trick: On the scope of the free energy principle and active inference.

Phys Life Rev

Rotman Institute of Philosophy, Western University, Canada; Department of Philosophy, Western University, Canada; Brain and Mind Institute, Western University, Canada.

Published: December 2021

The free energy principle (FEP) has been presented as a unified brain theory, as a general principle for the self-organization of biological systems, and most recently as a principle for a theory of every thing. Additionally, active inference has been proposed as the process theory entailed by FEP that is able to model the full range of biological and cognitive events. In this paper, we challenge these two claims. We argue that FEP is not the general principle it is claimed to be, and that active inference is not the all-encompassing process theory it is purported to be either. The core aspects of our argumentation are that (i) FEP is just a way to generalize Bayesian inference to all domains by the use of a Markov blanket formalism, a generalization we call the Markov blanket trick; and that (ii) active inference presupposes successful perception and action instead of explaining them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plrev.2021.09.001DOI Listing

Publication Analysis

Top Keywords

active inference
16
markov blanket
12
blanket trick
8
free energy
8
energy principle
8
general principle
8
process theory
8
principle
5
inference
5
trick scope
4

Similar Publications

Neural mechanisms of relational learning and fast knowledge reassembly in plastic neural networks.

Nat Neurosci

January 2025

Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA.

Humans and animals have a striking ability to learn relationships between items in experience (such as stimuli, objects and events), enabling structured generalization and rapid assimilation of new information. A fundamental type of such relational learning is order learning, which enables transitive inference (if A > B and B > C, then A > C) and list linking (A > B > C and D > E > F rapidly 'reassembled' into A > B > C > D > E > F upon learning C > D). Despite longstanding study, a neurobiologically plausible mechanism for transitive inference and rapid reassembly of order knowledge has remained elusive.

View Article and Find Full Text PDF

Motivation: Microbiota-derived metabolites significantly impact host biology, prompting extensive research on metabolic shifts linked to the microbiota. Recent studies have explored both direct metabolite analyses and computational tools for inferring metabolic functions from microbial shotgun metagenome data. However, no existing tool specifically focuses on predicting changes in individual metabolite levels, as opposed to metabolic pathway activities, based on shotgun metagenome data.

View Article and Find Full Text PDF

We investigated whether antibody concentrations measured in plasma using the Roche Elecsys® Anti-SARS-CoV-2 S assay (targeting the receptor binding domain, RBD) could estimate levels of Wuhan-Hu-1 and Omicron XBB.1.5 spike-directed antibodies with neutralizing ability (NtAb) or those mediating NK-cell activity.

View Article and Find Full Text PDF

Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA.

Commun Biol

January 2025

Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!