The influence of tissue spatial geometry and functional organisation on liver regeneration.

Semin Cell Dev Biol

MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.

Published: October 2022

The adult liver exerts crucial functions, including nutrient metabolism and storage, bile production and drug detoxification. These complex functions expose the liver to constant damage induced by toxins, metabolic intermediates and oxidative stress. However, the adult liver exhibits an exceptional regenerative potential, which allows fast and efficient restoration of tissue architecture and function both after tissue resection and toxic damage. To accomplish its vital role, the liver shows a peculiar tissue architecture into functional units, which follow the gradient of oxygen and nutrients within the parenchyma. Much less is known about the influence of tissue spatial geometry and functional organisation on adult liver regeneration. Here I examine the experimental evidence in mouse models showing that the spatial organisation of the epithelial and mesenchymal compartments plays a key role in liver regeneration and favours the establishment of regenerative adult liver progenitors following liver injury. I also discuss the advantages and limitations of human and mouse 3D hepatic organoid systems, which recapitulate key aspects of liver function and architecture, as models of liver regeneration and disease. Finally, I analyse the role of the YAP/TAZ transcriptional co-activators as a central hub sensing the extra-cellular matrix (ECM), metabolic and epigenetic remodelling that regulate liver regeneration and promote liver disease, such as fibrosis, chronic liver disease and liver cancer. Together, the findings summarised here demonstrate that local physical and functional cellular interactions determined by the liver peculiar spatial geometry, play a crucial role in liver regeneration, and that their alterations have important implications for human liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2021.09.011DOI Listing

Publication Analysis

Top Keywords

liver regeneration
24
liver
18
adult liver
16
spatial geometry
12
liver disease
12
influence tissue
8
tissue spatial
8
geometry functional
8
functional organisation
8
tissue architecture
8

Similar Publications

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Emerging Functional Porous Scaffolds for Liver Tissue Engineering.

Adv Healthc Mater

December 2024

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.

Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions.

View Article and Find Full Text PDF

Self-maintenance of zonal hepatocytes during adult homeostasis and their complex plasticity upon distinct liver injuries.

Cell Rep

December 2024

Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Hepatocytes are organized into distinct zonal subsets across the liver lobule, yet their contributions to liver homeostasis and regeneration remain controversial. Here, we developed multiple genetic lineage-tracing mouse models to systematically address this. We found that the liver lobule can be divided into two major zonal and molecular hepatocyte populations marked by Cyp2e1 or Gls2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!