The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468381 | PMC |
http://dx.doi.org/10.3390/bios11090301 | DOI Listing |
ACS Appl Mater Interfaces
August 2024
Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.
Nucleic acid detection plays a pivotal role in the accurate diagnosis of diseases. The CRISPR/Cas detection system, noted for its significant utility in a variety of applications, often necessitates enhanced sensitivity or specific signal amplification strategies, particularly for detecting low-abundance biomarkers. In this study, we present a quantum-dot-encoded beads (QDB)-energized CRISPR/Cas12-based lateral-flow assay (QDB-CRISPR-LFA).
View Article and Find Full Text PDFAnal Chem
April 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PRChina.
Sensors designed based on the -cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the -cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state.
View Article and Find Full Text PDFAnal Chem
April 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India; Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India. Electronic address:
Cell wall synthesis and cell division are two closely linked pathways in a bacterial cell which distinctly influence the growth and survival of a bacterium. This requires an appreciable coordination between the two processes, more so, in case of mycobacteria with an intricate multi-layered cell wall structure. In this study, we investigated a conserved gene cluster using CRISPR-Cas12 based gene silencing technology to show that knockdown of most of the genes in this cluster leads to growth defects.
View Article and Find Full Text PDFFood Chem
April 2024
Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China. Electronic address:
Hazelnut, one of the most popular tree nuts, is widely found in processed food and even very small amounts can trigger severe allergic reactions in susceptible people. Herein, we developed a sensitive and rapid method based on CRISPR and qPCR capable of detecting low-abundance hazelnut in processed food. The assay, known as CRISPR-based nucleic acid test method (Crinac) can detect 1 % of hazelnut in a mixture and allows the species to be identified in a complex processed sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!