AI Article Synopsis

  • Developing reliable diagnostic tests is crucial to controlling COVID-19, but traditional methods like ELISA and RT-PCR are often costly and complex to use.
  • Lateral flow immunoassays (LFIA) offer a simpler and cheaper alternative, although they currently face issues with accuracy.
  • The article discusses recent advancements in LFIA for detecting SARS-CoV-2 and explores future possibilities with smartphones and Artificial Intelligence for better disease detection and monitoring.*

Article Abstract

The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466143PMC
http://dx.doi.org/10.3390/bios11090295DOI Listing

Publication Analysis

Top Keywords

lateral flow
12
advances novel
8
novel lateral
8
flow technologies
8
technologies detection
4
detection covid-19
4
covid-19 development
4
development reliable
4
reliable robust
4
robust diagnostic
4

Similar Publications

Innovative Ricin Toxin Detection: Unraveling Apurinic/Apyrimidinic Lyase Activity and Developing Fluorescence Sensors.

Anal Chem

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

Ricin toxin (RT) is a potential bioterrorism agent because of its high potency, extremely small lethal dose, ease of preparation, and notable stability. Therefore, a portable method is urgently required to efficiently detect and determine the presence of toxicity of RT and evaluate its potency for public health monitoring and counter-bioterrorism responses. Currently, enzyme-based assays for detecting RT mainly focus on its -glycosidase activity.

View Article and Find Full Text PDF

Numerous studies support the role of dopamine in modulating aggression, but the exact neural mechanisms remain elusive. Here we show that dopaminergic cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression in male mice in an experience-dependent manner. Although VTA dopaminergic cells strongly influence aggression in novice aggressors, they become ineffective in expert aggressors.

View Article and Find Full Text PDF

The regional differences in cerebral oxygen extraction fraction (OEF) in brain were investigated using positron emission tomography (PET) in detail with consideration of systemic errors in PET measurement estimated by simulation studies. The cerebral blood flow (CBF), cerebral blood volume (CBV), OEF, and cerebral metabolic rate of oxygen (CMRO) were measured on healthy men by PET with O-labeled gases. The OEF values in the pons and the parahippocampal gyrus were significantly smaller than in the other brain regions.

View Article and Find Full Text PDF

Development of highly sensitive lateral flow immunoassay using PdNPs for detection of Plasmodium species.

Clin Chim Acta

January 2025

ARKRAY Healthcare Pvt. Ltd., Plot No. 336, 338, 340, Rd Number 3, GIDC, Sachin, 394230 Surat, Gujarat, India.

A lateral flow immunoassay (LFIA) employing palladium nanoparticles (PdNPs) labelled with antibodies has been innovatively designed for the precise detection of Plasmodium falciparum pLDH and HRPII antigen. This study focuses on development of LFIA based on PdNPs detection system to substantially enhance the visual detectability (vLOD), achieving an impressive 12 parasites/microliter (p/µl) vLOD in comparison with conventional system represented 50 p/µl vLOD. The research introduces a novel amplification system that not only heightens the sensitivity of LFIA but also maintains intense coloration.

View Article and Find Full Text PDF

Objective: Trichomoniasis is a globally prevalent sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Polymerase chain reaction (PCR) is the gold standard for diagnosing trichomoniasis, but it is expensive. Antigen tests are immunochromatographic immunoassays that detect T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!