Alteration of power law scaling of spontaneous brain activity in schizophrenia.

Schizophr Res

Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science and Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:

Published: December 2021

Nonlinear dynamical analysis has been used to quantify the complexity of brain signal at temporal scales. Power law scaling is a well-validated method in physics that has been used to describe the dynamics of a system in the frequency domain, ranging from noisy oscillation to complex fluctuations. In this research, we investigated the power-law characteristics in a large-scale resting-state fMRI data of schizophrenia and healthy participants derived from Taiwan Aging and Mental Illness cohort. We extracted the power spectral density (PSD) of resting signal by Fourier transform. Power law scaling of PSD was estimated by determining the slope of the regression line fitting to the logarithm of PSD. t-Test was used to assess the statistical difference in power law scaling between schizophrenia and healthy participants. The significant differences in power law scaling were found in six brain regions. Schizophrenia patients have significantly more positive power law scaling (i.e., more homogenous frequency components) at four brain regions: left precuneus, left medial dorsal nucleus, right inferior frontal gyrus, and right middle temporal gyrus and less positive power law scaling (i.e., more dominant at lower frequency range) in bilateral putamen compared with healthy participants. Moreover, significant correlations of power law scaling with the severity of psychosis were found. These findings suggest that schizophrenia has abnormal brain signal complexity linked to psychotic symptoms. The power law scaling represents the dynamical properties of resting-state fMRI signal may serve as a novel functional brain imaging marker for evaluating patients with mental illness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2021.08.026DOI Listing

Publication Analysis

Top Keywords

power law
36
law scaling
36
healthy participants
12
law
9
scaling
9
power
9
brain signal
8
resting-state fmri
8
schizophrenia healthy
8
mental illness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!