A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative analysis on the photolysis kinetics of four neonicotinoid pesticides and their photo-induced toxicity to Vibrio Fischeri: Pathway and toxic mechanism. | LitMetric

Comparative analysis on the photolysis kinetics of four neonicotinoid pesticides and their photo-induced toxicity to Vibrio Fischeri: Pathway and toxic mechanism.

Chemosphere

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.

Published: January 2022

Neonicotinoids are widely used pesticides all over the world and pose severe water pollution. Although they can be degraded via absorbing sunlight, few attentions have been paid to the environmental risks of their photolysis products. In this paper, the photo-toxicity was investigated for four neonicotinoids (dinotefuran, nitenpyram, thiamethoxam and clothianidin) based on a series of experiments (i.e., photolysis kinetics, radical scavenging, bioluminescent inhibition test to Vibrio Fischeri and intermediate identification) and in-silico calculation of photolysis pathway. The results show that direct photolysis dominates the photolysis of the four neonicotinoids under simulated sunlight radiation. The bioluminescent inhibition kinetics shows that all four neonicotinoids have photo-induced toxicity to V. fischeri, but with different light-induced responses. Scavenging radicals (·OH and O) will decrease the photo-induced toxicity of all the four neonicotinoids, indicating radicals play important roles to the photo-chemical reactions of intermediates. Dissolved organic matters exhibit slightly shading effect to the photolysis rates of four parent compounds. However, the ROSs generated by DOM can accelerate the photo-chemical reactions of intermediates, leading to different photo-induced toxicity in present of DOM. According to the detected intermediates and Gaussian calculations, there are different photolysis pathways and mechanisms for the four neonicotinoids. The calculation for photo-sensitization reactions with O indicates that both energy transfer reactions and electron transfer reactions can be produced under simulated sunlight radiation, which further consolidate that reactive oxygen species are involved in the photolysis process. A theoretical model has been developed to explain the toxicity variations of four neonicotinoids in different aqueous conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132303DOI Listing

Publication Analysis

Top Keywords

photo-induced toxicity
16
photolysis
9
photolysis kinetics
8
vibrio fischeri
8
bioluminescent inhibition
8
simulated sunlight
8
sunlight radiation
8
photo-chemical reactions
8
reactions intermediates
8
transfer reactions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!