Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhr mice). Interestingly, although Ghrhr mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhr mice. Despite presenting dwarfism, the majority of Ghrhr male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2021.119970 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!